AD=A118 822  ASSESSMENT SYSTEMS CORP ST PAUL MN T OF/6 9/2
' DEVELOPMENT OF A MICROCOMPUTER=HASED ADAPTIVE TESTING SYSTEM. P==ETC (1)
JUN 82 € D VALE» C ALBING: L FONTE~LENNOX N00O14=A2=C=0132
UMLLASSIFIED ONR=ASC~g2-01 - . NL







- - - ..

SECUXITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE BEF oo R T O ORM
[T, REPGRT NUMBER 2. GOVY ACCESSION NO.J 3. RECIPIENT'S CATALOG NUMBER
Research Report ONR-ASC-82-01 b—AJ-J
4._TITLE (end Subtitle) S. TYPE OF REPORT & PERIOD COVERED
Deveiopment of a Microcomputer-Based Adaptive Final Report: 1 January 1982
Testing System to 30 June 1982

Phase I--Specification of Requirements and
Preliminary Design

7. AUTHOR(®) ¢, David Vale

Carl Albing N00014-82-C-0132
Lisa Foote~Lennox

Thom Foote-Lennox

§. PERFORMING ORG. REPORT NUMBER

8. CONTRACT OR GRANT NUMBER(s)

P ——————————————————S—— S —————————————————
9. PERFORMING ORGANIZATION NAME AND ADDRESS T PROCRAN ELEWENT. PROJECT. TASK
Assessment Systems Corporation
2395 University Avenue, Suite 306 W.U,: NR 150-481
St. Paul, MN 55114
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Office of Naval Research 30 June 1982
Department of the Navy 3. NUMBER OF PAGES
Arlington, VA 22217 5

T4, MONITORING AGENCY NAWE & ADDRESS(I dilferent from Controlling Office) | 15. SECURITY CLASS. (of this feport)
Unclassified

[ 15a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited. Reproduction in whole
or in part is permitted for any purpose of the United States Government.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, il different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if y and k fy by block ber)

adaptive testing latent trait theory

computerized testing microcomputer testing system

tajilored testing adaptive testing computer system design
item response theory microcomputer evaluation -

20. ABSTRACT (Continue on reveree side if necoessary and ide~tify by bilock number)

/> Specifications were developed for a microcomputer-based adaptive testing
system based on reviews of item types in current use and a survey of the needs
and desires of individuals engaged in adaptive testing research and other
related activities. From these specifications, a general system configuration
was developed and the design of a general-purpose software package was
initiated. This design included subsystems for test construction, item
banking, test administration, test reporting, and test analysis. Various .

DD , 33", 1473  toition of 1 wov es 18 omsoLETE

J

4

Unclassified [
$/N 0102-LF-014-6601 SECURITY CLASSIFICATION OF TH1S PAGE (Wihen Data Bntered)

"

OO - Tt K

e ettt SR e



Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (Whan Date Entered)

20.
microcomputer systems were considered in search of hardware on which
to implement the design; of these, three eight-bit microcomputer
systems were selected for future consideration. A draft of a user's
manual, reviewed by experts, was developed for the proposed system
and served as a preliminary design document. In summary, this research
indicated that a definite need exists for a microcomputer-based
adaptive testing system and that the proposed system would meet that
need.
A
‘m—;’-" w
(ur1s €
pric T

Hu
Justi:icut;t-.,,
e

e = —

BY—

nistriputical

Availobiifi”

7,\1"51 FR

pist ! oSeect”
\

r- S

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE(When Dots Enterod)

P



PREFACE

This report summarizes the first phase in a project conducted to
develop an inexpensive microcomputer-based adaptive testing system. Its
focus was to determine the needs and desires of potential users of the
system and to design a system to meet those needs. Later phases, if
funded, will result in the development and commercial availability of such a
system. :

Many individuals participated in this project, some through
interviews, some by completing questionnaires, and some by extensive,
assistance. The authors would like to collectively express their
appreciation to all of these individuals. In addition, the authors would
like to extend their special thanks to James McBride, Malcolm Ree, and
David Weiss for critically reviewing the draft User's Manual and to Stephen
Prestwood, Kathleen Gialluca, David Weiss, and Sandra Whelan for ad . ice
and editing of this report.

e e




e 4

TABLE OF CONTENTS

i. SPECIFICATION OF THE SYSTEM REQUIREMENTS . . . . . « . . 7

ASurveyofltemTypes;................. 8

Knowledge Items . . « ¢« ¢ « ¢ o ¢ ¢« o o o s o o o o & 8
Cognitive-Process Items . . « . « ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o & 9
Perceptual-Motor Items .« « . « ¢« ¢ ¢ ¢ ¢ ¢ o o o s o o "
Simulations + ..« « + ¢ ¢ ¢ ¢ ¢ s 0o e s e s s 0 e e 13
Non-Cognitive Items . « « ¢« ¢« ¢« ¢« « ¢ o o ¢ o o s s « » 4

A Survey of Testing Models . . . « ¢+ + ¢« ¢« ¢ ¢ ¢« ¢ e s e s W

Inter-ltem and Inter-Subtest Branching Strategies . . . 14

! Unidimensional IRT-Based Branching Strategies . . . . 15

: IRT models. o « ¢« « ¢« ¢ o ¢ ¢ ¢ ¢ e s s ¢ ¢ s s +» 16

i Ability estimation. « + « « ¢ ¢« ¢« ¢ ¢ ¢ ¢ v o0 .. 19
? ltem selection . . « « + ¢« 4 4 ¢ s o ¢ ¢ o e 0o 19
v Muitidimensional IRT-Based Strategies . . . . . . « . . 20
Order-Theory Strategies .« « « o « ¢ ¢« ¢ o ¢ ¢ ¢« v « « 20

d Mastery Testing Procedures . « « « ¢« « ¢ « ¢ ¢ ¢« o &« o 21
A Survey of Potential System Users . . . « « « ¢ + o« » + » 22

} Interviews with Potential System Users . . . . . ... 22
System hardware . . . s s s e s s s s s e s e s 22

Test authoring « « « ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢« o ¢ o o o o« 23

Potential applications . . . . . « « ¢« ¢ ¢ ¢ ¢ o . . 23

ltem types « . ¢ ¢ « ¢ ¢ o o o ¢ ¢ o ¢ ¢ o s« o s o 23

Testing strategies + « « ¢ ¢ ¢+ ¢ ¢ ¢ ¢ ¢ ¢ ¢« o o+ 23

A Questionnaire Survey. of Potential System Users . . 28

Test characteristics « ¢« ¢« « « « ¢« o s o ¢ s o o &« 25

Test administration.. . « . « ¢« ¢« ¢ ¢« ¢« o ¢ ¢ o+ » 28

System procurement . . . . . ¢ ¢ s s s e s . o 29

Test development. + « « ¢« ¢ ¢« ¢ &+ v ¢ ¢ ¢« ¢ ¢« « o 30

Recommended System Characteristics . « ¢« « ¢« + ¢« ¢« « o« + « 30

Accommodation of Tests « ¢ ¢« ¢« ¢ ¢« o ¢ o o o o o s o o 31
Storage requirements « « « ¢« + ¢« ¢ ¢« s o o o o . o 31
Display requirements . . « « ¢« ¢ ¢« ¢« ¢ ¢« ¢ ¢ & « » 3
Response requirements . . . . . . ¢« ¢« ¢+ ¢+ « o+ « » 33
item selection and scoring requirements . . . .. 34

Test Administration . . . ¢« ¢« « « « ¢ ¢ ¢ ¢ o o =« s o » 34

Affordability « « « « ¢« ¢ ¢« ¢« ¢ ¢ ¢ s e b o s 0 00 e 3

Test Development . . ¢ ¢« ¢ ¢« ¢ ¢ ¢ ¢ s o o ¢« o s o« o« » 35

-



d
I1. DESIGN OF A SYSTEM TO MEET THE REQUIREMENTS . . . . . . 36
A Review of Existing Systems . . . . . « « ¢ ¢« ¢« ¢« ¢ ¢« ¢« 36
CAT Systems * . . . * * * * . . L * L] L] . L] L] L . L) L] 36
The Minnesota system . . . ¢« ¢« « ¢ ¢ ¢ o « o o« « 36
The Civil Service system . « « « « « ¢ ¢ s « ¢« o« «» 37
The Army system . . . ¢« . « « ¢ ¢ ¢ o« o o o s« 37
The Missouri system . . . . « ¢« ¢ ¢ ¢« ¢ o o o » « 37
TCL w L] L] L] [ ] . L] . L) . L] L] - L) . . L L] . L) L] . . 38
cAl Syste“‘s L] L] . L] . L L] - L] . * * L . . L] L] L) L L) . 39
SILTS . L] . * L] * . L] L] L] L] L] L] - * L] L] . * L] L] L) 39
MIL . L] * L] Al L] L . L] L] L . . . L] . L . L L - . . 39
GENIS | L] L) . . L] L] L] L4 L] . L] L] L) L] L] L) . L] L] . . 39
PLATO. L4 L] L] - L] L . L] . . * L] . L4 L] L] - L] L] L] . “o
Directions Suggested by Current and Past Systems- . . 41
Test Construction . . « ¢« ¢+ + ¢ o ¢ o o s o ¢ s o ¢ s 0+ W1
Author Language « « « « o+ ¢« ¢ s o » v s s o o o s o+ 81
Module delimiters « « « « « ¢ ¢ ¢ o ¢ ¢ o ¢ ¢ o« « «» B2
Assignment statement. . . . . . . . . . . .. 42
Basic statements « « ¢« « ¢« ¢« « ¢ s o o ¢ s o o o . W2
Testing-strategy statements . . . . . . . . « . . #3
Conditional statements . ¢« « « « + ¢« ¢« ¢« ¢ ¢ ¢+ o 44
Declarative statements . . « « ¢« . « ¢« ¢« ¢ ¢ ¢+ o 84
Output control statements . . + . ¢« + ¢ ¢« ¢ ¢ + o #45
Menu System . . + . ¢ ¢ ¢ o ¢« ¢ ¢ ¢ ¢ ¢ ¢ o s o o s o W5
“em Banking. « + « + s ¢ e s s s e e s s e s e e e e U6
Item Classification and Storage . « « « ¢« « ¢« o« o o » o 86
special |tems L] L . L ] . L] L] . . . L ] L] . . L] L) . L] L] . u7
videod‘sc L] . L] L] ", . L] L] . L] L] L] . . L] L] < e - L] “7
Graphics L] . L] L] . . . . L) . . . . . L » L . L] . L] ua
Creating and Editing Item Text . « « « + + ¢« &« . » « «» 48
Test Administration . . ¢« « ¢ ¢ ¢ ¢ ¢ ¢ ¢ « s ¢ ¢ o s s o« 49
. InStructions . « « + + + ¢ ¢ o o s o s ¢ s e s s e e 0. N9
Item Presentation . . « « « ¢ o « « o« o s o ¢ ¢ ¢« s o« U9
Display information . . . . ¢« « ¢ ¢« ¢ ¢« ¢ o ¢« « + o 51
structure L] L) L] . L] . L] L] L] . . L) L] L] L L] L] L] L] L) 5'
Response Acceptance and Editing . . . . « « « . « . . 52
Error correction . « « ¢« « « o o o s ¢ ¢ o o s o « 32
Special responses . . . ¢« ¢« s ¢ ¢ s ¢ e e 0 s 0. 52
Tim‘ng L] L] L] . L] . . L] L] L[] L] - . . L L ] L . . L] . L] 52
‘ . Examinee Monitoring. « « « « « ¢« « ¢ o ¢ s o+ s ¢ ¢ o« 53
i"i Te!th‘tterpretaﬂon..................... 53
g
: i -8-
i

A e mem = vt — oA TS P e

~— ———




Test Analysis

Conventional Analyses . . . « ¢« + o o o« o o o ¢ s o o o
IRT Analyses . o« ¢ « ¢ ¢« o o+ o o ¢ o o o o o ¢ o o o &

.
Test Construction

Template Processing .
Input and output
Print-Instructs .
Accept-Input .

Flush-Trim. . .
Summary . . . .
Test Consolidation. .
Stage-One . . .
Stage-Two . . .
Stage-Three . .
Summary . . . . . .

item Banking. . . . . . .
Test Administration . . .

Fetch-and-Dispatch

Nest-Modules . . . .
Assign . . . . . ..
Declare . « ¢« « « « &
Present . . . . . . .
Sequence . . . . . .,
Search . . . « . . .
Skip *» & & & s 8 ° o
Keep . « ¢« o v ¢ + &

Test Interpretation. . . .

J Pass-One. . . .
Pass-Two

A Open-Module . .
Process-Module .
Close-Module . .
Summary . . . .

Test Analysis

Summary . . . . . s . . e

e o o & e e s o o

Interpretation Compiler

Interpretation Executor

DESIGN OF A SOFTWARE PACKAGE

e o o & & © o o o e o

TO

* e & o & o o e

e e e e o & o ¢ & o .

e o o o o & e o

IMPLEMENT

* e & e o &

e o & & o o o o o

e e e e o o o &

* o & o & e o o

e o & ¢ o o o o o

THE SYSTEM

* e o o v s

e e ¢ o o o o »

e o s 5 e & e @ ¢ + o

e & @ ¢ o o o o

¢ o ¢ o o o 8 o & e o

® & o o o & 3 o

LI
o o
e °
* o
. o
. o
* e
s o
¢ o
e e
LI
e o
. e
o e
¢ °
e e
LI
o s
* o
o o
LI
. »
. o
. »
e e
¢ e
e o
s o
o o
o o
* o
o o
e o

¢ o & @& o 8 o o & & o

e e ¢ o e o & & o

55

55
55

. e

e ——— g~

T vas e

cr———— .




iV. SELECTION OF COMPUTER HARDWARE
Hardware Requirements. . . . . .

Cost .
Display « « « « ¢ ¢ ¢ s+ «
input and Output Devices .
Network Capability

.

.
3
.

e o o o

Compatibility with Other Software
Secondary-Storage Requirements.
Performance Requirements . . . .

Summary

System Development Approaches .

.

.
L]

Build from Chip-Level Components. . .
Start with a Single-Board Computer . .
Use a Packaged System . . . . . .

Use a Packaged Sysiem with a Network

Current Computer Systems . . « « « « « &« o .

Systems That Were Too Expensive . . . .
Systems That Did Not Meet Requirements
Systems That Were Acceptable. . . . . .
Intertec Data Systems SuperBrain
IBM Personal Computer . . . . . . .

NEC APC (Advanced Personal Computer

Conclusions

V. RECOMMENDATIONS FOR FURTHER DEVELOPMENT

Accomplishments in Phase 1. . . . . . « . . .

Recommendations for Phase Il . .
REFERENCES . . ¢ ¢ « ¢ ¢ o ¢ o o o o o oo
APPENDIX A. DRAFT USER'S MANUAL . . .
APPENDIX B.

APPENDIX C.

C e e—— — B e

PARTIAL BNF DESCRIPTION FOR

CATL

LIST OF SYSTEMS CONSIDERED . . . .

e o o o

3

* o o o

)

¢« o & o o o

» e ® o o »

75

76

76
76
76
77
77
77

78
78
79
80
80
81
81

82
83

85
86
86

87

88
88
89
90
96
160

162

e - g

P

—

PSS

o mm—— -

e -




1. SPECIFICATION OF THE SYSTEM REQUIREMENTS

The interactive administration of psychological tests by computer has
been a popular idea for more than a decade. Originzally, the main impetus
for the concept was to let a computer take over some of the mundane work
of psychologists or psychometrists. As the concept grew, however, and
psychometric theory caught up with the concept, it became obvious that
the computer could not only perform the work of the psychometrist, it
could actually do it more effectively. The computer, with statistical
formulae and appropriate data, could quickly perform efficient score
computations. Combining psychometric concepts with the interactive
administration of tests by computer resulted in computerized adaptive
testing (CAT).

A basic problem became apparent when the amount of programming
required for adaptive testing was considered. Even though the computer
was theoretically capable of replacing the psychometrist, in practice this
feat was accompljshed only in specific areas. [t is easy to program a
computer to administer a single, fixed-length, conventional multiple-choice
test. It is more difficult to program multiple tests, variable-length tests,
and adaptive tests. Tests with non-objective responses are still more
difficult to implement.

A few computerized testing systems have been developed. For the
most part, they have been small, special-purpose systems or large
research systems developed by a single organization for an internal
purpose. Thus, they are not general purpose or portable. Without a
portable, psychometrically capable system, entering the computerized
testing field has involved considerable developmental work to make a
computerized test operational. The need for a capable, portable CAT
system is obvious.

The obst§acle in the development of such a system has been that a
capable CAT system is usually somewhat dependent on the computer
hardware; transfer from one machine to another is therefore difficult.
Since large computers are expensive, they usually cannot be dedicated
exclusively to testing. A research organization’s testing system thus has
had to run on the systems available. Rarely did many testing
organizations have compatible equipment.

The availability of microcomputer systems and components has
changed this, however. Capable microcomputers are sufficiently
inexpensive that they can be dedicated solely to testing. It is now
possible to design a testing system around a single computer and still have
a system that is cost effective for testing.

A portable, dedicated CAT system is feasible, and it is reasonable to
expect that the demand for such a system could be great. To meet this




demand, such a system should be able to administer tests of most formats
and strategies (both adaptive and conventional) that could benefit from
computer administration. A comprehensive list and description of potential

system requirements was compiled as a first step in the design of a system
meeting these needs.

The analysis of system requirements will be presented in four parts.
Part 1 will present a comprehensive list of item types currently in
existence. Part 2 will consider testing strategies for selecting and
ordering items; adaptive testing models will be reviewed in detail. Part 3
will describe a survey of system requirements as seen by potential system
users. Finally, Part 4 will synthesize the requirements to provide basic
specifications for the system.

A Survey of Item Types

Test items can be grouped into four general categories: (1)
knowledge, (2) cognitive process, (3) perceptual-motor, and (4)
non-cognitive. Each of these areas will be discussed in turn, including
descriptions of a variety of item types within each area.

Knowledge Items

A test of knowledge attempts to assess how much information an
examinee brings to the testing situation. Knowledge tests are probably
the most appropriate for written administration because knowledge can be
assessed by simply asking the examinee whether s/he can recall or
recognize certain information. Knowledge tests are the most common type
encountered, and consist exclusively of items in the form of questions.
The format in which these questions are asked can vary widely (cf.
Wesman, 1971).

The most common question format uses dichotomously scored
multiple-choice items. These items present a question followed by two to
five alternative answers, only one of which is correct. The examinee's
task is to choose the correct alternative. The majority of these items can
be presented In textual format and require no pictures or special
characters that are not available on a standard CRT terminal. Some do
require a picture or a drawing for the stem, however (e.g., the
Mechanical Comprehension items of the Armed Services Vocational Aptitude
Battery, or ASVAB). A few require pictures or drawings for both the
stem and the alternatives. Responses are usually limited to a single
number or letter within a small range.

A variation of the simple multiple-choice item is the answer-
until-correct item (Hanna, 1975). The initial presentation of this type of
item is identical to that of the simple multiple-choice item. If the examinee
answers incorrectly, however, the item is presented again with the




previously attempted alternatives eliminated or disabled. In com-
.puterized presentation, this may be done by eliminating the chosen
alternatives from the CRT screen. The item is presented until the
examinee answers correctly or until all of the incorrect alternatives are
exhausted. )

The confidence-weighted multiple-choice item format (Shuford, Albert,
€ Massengill, 1966) is another method of extracting more information from
the simple multiple-choice item. In this format, the examinee answers the
multiple-choice item and is then asked to indicate his/her level of
confidence that the choice is correct. Administratively, this is a matter of
following each knowledge question with a confidence question by which the
examinee indicates his/her degree of confidence that the answer was
correct.

Another variation, probabilistic-response items (de Finneti, 1965),
incorporates the examinee's confiderce into the initial item response.
Rather than choosing a specific alternative, the examinee assigns

probabilities to each alternative in accordance with his/her confidence that '

each is correct. Administratively, these items require a simple method for
allowing the examinee to assign the probabilities to the appropriate
alternatives and a method for editing and correcting the probabilities when
they do not add up to 1.0.

Although the multiple-choice response has been the method most
widely implemented for knowledge items, the free-response item has seen
some limited use in computerized testing. For item types requiring a
numerical response, such as an arithmetic item, the free-response mode is
only slightly more difficult to implement than the multiple-choice mode.
Simple textual-response items have also been successfully implemented on a
computer (e.g., Vale & Weiss, 1977; Vale, 1978). The problem with
free-response items comes not in accepting the response, but in processing
the response into a form that can be scored by the computer. In the
example by Vale (1978), the free responses were categorized for further
statistical processing. More complex (e.g., essay) free-response modes
have not yet been successfully computerized, although some
computer-assisted-instruction programs can accept a limited range of free
responses in textual format.

Cognitive-Process Items

Cognitive-process items assess whether an examinee possesses a
cognitive skill without, in theory, requiring the examinee to possess any
knowledge. The distinction between cognitive-process and knowledge items
is similar to the distinction that may once have existed between aptitude
and achievement before, among other examples, vocabulary achievement
became a primary component of scholastic aptitude.

Several cognitive-process tests considered for use in armed service
recruit selection and placement have been listed and described by Cory




(1973, 1977, 1978). These include five tests of memory and four tests of
concept formation. A "Memory for Objects" test tachistoscopically
presented frames containing pictures of four to nine objects. The
examinee's task was either to recall and type the items or to recognize the
items from a word list. The "Memory for Words" test was similar except '
that the frames consisted of three to nine three- or five-letter words.
The "Visual Memory for Numbers Test" presented a sequence of four to
thirteen digits, one digit every second; the examinee had to recall the
sequence. The "Auditory Memory for Numbers" test was similar except
that the digits were presented orally by a tape recorder. The
"Object-Number Test"” was a paired-associates learning task.

The first concept formation test was "Computerized Twelve
Questions," which was like the game Twenty Questions. It differed in
that a list of possible questions was supplied from which only twelve could
be chosen. "Computerized Password” presented clue words; the examinee's
task was to identify the object that the clues suggested. The "Nonsense
Syllogisms Test" presented syllogisms containing nonsense words. I[n this
test, the examinee had to indicate whether the conclusion of the syllogism
was correct. The "Inference Test" contained items consisting of a
statement and possible conclusions; the examinee had to indicate which
conclusions were correct.

Barrett, Alexander, Doverspike, Cellar, and Thomas {1982) doveloped
a battery of information-processing tests. Their cognitive-process items
(most of which measured aspects of short term memory) included three :
cognitive-process tests. The "Sequential Memory" test consisted of one to
five letters presented sequentially. Each letter was presented for 0.8
second followed by a 0.2 second delay. The presentation of the last letter
was followed by a 2 second delay, after which a probe letter was
presented. The examinee responded by pressing a button on the response
panel, indicating whether the probe letter was the same as or different
from any one of the memory set letters. The examinee had 3 seconds to
respond. The "Simultaneous Memory" test consisted of one to five letters
presented simultaneously in a horizontal array for 3 seconds. Thes2
letters were erased and after a 2 second delay the probe letter was
presented. The examinee responded by pressing a button on the response
panel!, indicating whether the probe letter was the same as or different
from any one of the memory set letters. The examinee again had 3
seconds to respond. Scoring was the same as for the seguential memory
test. The "Multiple Item Access" test presented two sets of letters. The
first letters were presented simultaneously in a horizontal array for 3
seconds, then erased. After a delay of 2 seconds, the second five letters
were presented simultaneously in a horizontal array for 3 seconds. The
examinee then responded according to how many letters, one to five, were
the same in the sets of letters. There were a total of 60 trials. The
score was the number correct.

Church and Weiss (1980) described a spatial reasoning test that
presented two matrices of fifteen numbers in a four-by-four grid. The

-10-




K.

WP

e et s < v, ol —n CmAR L s e AmAERE  m g Rl < b . rememe tw = mm—

o —— e ——

examinee was to move the numbers of one matrix to make the matrices
match by moving single numbers into the single vacant slot. Movement
was accomplished by entering the number to be moved and the direction in
which to move it.

The main administrative difference between the knowledge items and
the cognitive-process items appears to be the requirement for a dynamic
administration process in some of the cognitive-process items. The memory
items require that portions of the items be sequenced with precise timing
between portions. Additionally, as implemented by Cory, some of the
items require free responses.

Perceptual-Motor Items

Perceptual-motor items differ from the items discussed so far in that
the previous items require discrete {e.g., keyboard) responses.
Perceptual-motor items may require a continuous response of some form
(e.g., joystick) rather than a press of a finite number of response
buttons. These items also may require a pictorial or graphic stimulus.

Cory (1973) described two tests of perceptual speed, four tests of
perceptual closure, and two tests of detection of motion. The "Comparing
Figures" test, one of the perceptual speed tests, presented sets of
squares or circles with embedded vertical or horizontal bars. The
examinee's task was to determine if all of the bars were oriented in the
same way. The "Counting Numbers" test presented a string of numbers
and asked the examinee to determine the frequency of a specified number.

"Recognizing Objects," one of the perceptual closure tests, presented
pictures of common objects with 10 to 90 percent of the picture blotted
out. The examinee's task was to identify the object. The "Gestalt
Completion" test was very similar. "Concealed Words" presented words
with missing letters and required the examinee to identify the word. The
"Hidden Patterns" test required the examinee to recognize a test pattern
embedded in a larger pattern.

The "Memory for Patterns" test, one of the movement detection tests,
presented a pattern by sequentially blinking a sequence of dots.
Examinees were asked to identify the patterns. The "Drift Direction" test
presented a dot moving slowly by a line. The task was to determine if it
wis moving toward, away from, or parallel to the line.

Hunter (1978) described two computerized perceptual-motor tests that
were outgrowths of earlier mechanical tests. "Two-Hand Coordination”
required the examinee to move a cursor to follow a target as it rotated
around the screen. The cursor was controlled by two hand controls, one
for vertical movement and the other for horizontal movement. The score
was computed as the average distance from the target over a five minute
period. This type of item differs from those previously discussed in that

_‘l,_

e -

Ll i e

SR




it requires real-time control of the screen and an examinee interface that
is mechanical and continuous rather than a discrete response.

A second test described by Hunter was "Complex Coordination." This
test required the examinee to keep one cursor on target with a two-axis
joystick and a second cursor centered, in one dimension, tf. >ugh the use
of foot pedals. The required actions roughly simulated the motions
required to fly an airplane. The test was scored by computing the
average distance from the cursors to the targets. Administratively, this
test is very similar to "Two-Hand Coordination." The primary difference
is the added complexity of the stimulus and the response.

Barret et al.'s (1982) battery also included several tests of perceptual
memory abilities. In the "Array Memory" test, four figures were
presented simultaneously on the screen for 2 seconds and then were
erased. The figures consisted of a pound sign, arrow, roman numeral
five, and an "X." The examinee was then presented with one of the four
figures and required to indicate on the response pane! in what area of the
screen that figure had previously appeared. Examinees had 3 seconds in
which to respond. The score on the test was the number of correct
responses. The "Vector Memory" test was identical to the above "Array
Memory" test except that, after presentation of the four figures, the
examinee was shown two figures and required to indicate in which area of
the screen the two figures would meet if one of them moved horizontally
and the other moved vertically. Examinees had 3 seconds in which to
respond. The score was the number of correct responses.

The "Visual Search” test presented a probe letter for 0.8 second
before it was erased. After a delay of 2 seconds, a set of one to five
letters was presented simultaneously in a horizontal array for 3 seconds
and then erased. The examinee responded by pressing the appropriate
button on the response panel. This indicated whether the probe letter
was the same as or different from any one of the memory set letters.
Examinees had 3 seconds to respond. In the "Linear Scanning" test,
twenty equilateral triangles were presented in a row. All but one, two,
three, or four of the triangles had lines through them. The row of
triangles was presented for 1.5 seconds and then erased. The examinee
was then required to indicate whether one, two, three, or four of the
triangles were without lines by pressing the corresponding button on the
response panel. The number of triangles without lines through them
varied randomly across the 20 trials. Examinees had 3 seconds in which
to respond. The score was the number of correct responses. A similar
"Matrix Scanning" test differed from the "Linear Scanning" test only in
that the triangles were presented in a 4§ x 5 matrix.

Barrett et al.'s test battery also included a reaction time test. The
test presented a warning signal (an asterisk) and followed it 1 to §
seconds later with a letter or a number. The examinee responded by
pressing a button on the response panel to indicate whether a letter or a

_12_




number had been presented. The score consisted of mean response time
for the correct responses.

Past versions of the ASVAB have contained perceptual tests. The
ASVAB-5 (Fletcher & Ree, 1976) contained an "Attention to Details Test"
and a "Space Perception Test." The former was a timed clerical test that
required the examinee to count "C"s embedded in a field of "O"s. The
latter contained patterns representing flat sheets of paper or metal. The
examinee's task was to recognize into what shape it was folded. The
ASVAB-8 {Ree, Mathews, Mullins, & Massey, 1982) contained a "Coding
Speed" test which required the examinee to match a word to a key and
determine the corresponding number.

Simulations

Simulations are tests designed to realistically replicate specific aspects
of other environments. Medium- and high-fidelity aircraft simulators are
routinely used for flight training. Simulations can also be used for
testing. A general-purpose testing machine should probably limit its area
of capability to information-intensive simulations, however, which require
presentation of information and collection of decision data. Several
simulations within this portion of the domain have been reported in the
literature.

Prestwood (1980) briefly described a system for administering medical
simulations. Medical residents were allowed to find symptoms, administer
treatments, and cure {or kill) a patient. Administratively, the items were
in a multiple-choice format and the simulation proceeded by branching
mechanically from a response category to another item. Implementation of
simulations like these is not much more difficult than implementation of
simple multiple-choice items.

A paper-and-pencil simulation of submarine component maintenance
was described by Robinson and Walker (1978). Their simulation was in a
multiple-choice, answer-until-correct format. Examinees used a latent-ink
answer sheet that branched them to an item in a book when a correct
answer was given. This simulation, unlike Prestwood's, required
high-resolution representation of oscilloscope screens and equipment
panels. The simulation logic could be handled easily in the same manner
as Prestwood's, however.

Knerr (1978) discussed a training simulation in which the components
of an electrical circuit were simulated. His purpose for using the
simulation was to teach student troubleshooters to think like expert
troubleshooters. Such a simulation could also have been used to evaluate
the competence of student troubleshooters compared to expert
troubleshooters. The advantage of such a simulation is that all possible
responses do not need to be explicitly programmed. The disadvantage of
such a simulation is that a simple means of defining and connecting
components needs to be developed.

-13-

PP e ————




Non-Cognitive ltems

Non-cognitive items include all items that do not assess knowledge,
skill, or ability. They include such things as personality items, interest
items, and value judgments. Administratively, they are very similar to
knowledge items because they ask a question which, theoretically, can be
answered. Any testing system capable of administering cognitive items
should be capable of administering non-cognitive items.

A Survey of Testing Models

A computerized testing system probably cannot be justified if it only
administers conventional paper-and-pencil tests on a computer terminal.
Fortunately, psychometric technology has kept pace with computer
technology. There are new testing strategies, more efficient than the old,
that take advantage of the computer's high-speed computation facilities. A
set of procedures and algorithms, collectively called adaptive testing
methods, makes testing more efficient by selecting items to meet the
assessment needs of each specific individual. In ability testing, this
amounts to administering easy items to low-ability examinees and difficult
items to high-ability examinees. The objective of a testing strategy is to
simultaneously estimate an examinee's ability and administer items tailored
to that ability.

Vale (1981) grouped most of the adaptive testing strategies developed
to date into three categories: Inter-item branching strategies,
inter-subtest branching strategies, and model-based branching strategies.
A multipurpose testing system should include the capability to administer
adaptive tests of all three forms. For the inter-item and inter-subtest
branching models, the difficult task in system design is to provide a
convenient method of specifying the algorithms. For the model-based
procedures, the greatest challenge is in selecting and designing a set of
statistical programs that will allow the testing strategies to be implemented
efficiently. Most current CAT research is on the model-based strategies.
This category from Vale's classification has thus been expanded in the
discussion below.

Inter-Item and Inter-Subtest Branching Strategies

The inter-item branching strategies are implemented by structuring
an item pool so that testing begins with one item and each response to
each item leads to administration of a specific item. In the typical
inter-item branching strategy, a correct response leads to a more difficult
item and an incorrect response leads to an easler item. Examples of this
class of strategies are the pyramidal and Robbins-Monro strategies
(Krathwohl & Huyser, 1956; Lord, 1971a; Weiss, 1974; Weiss & Betz,
1974).

-14-




The inter-subtest branching strategies are similar in concept to the
inter-item branching strategies except that the branching is from subtest
to subtest rather than from item to item. A subtest is simply a group of
items. Vale {1981) further divided this class of strategies into re-entrant
and nonre-entrant forms. A re-entrant form was one in which
administration could branch to a subtest, out of the subtest, and back
into it. An example of the nonre-entrant form is the two-stage test
(Angoff & Huddleston, 1958; Weiss, 1974; Weiss & Betz, 1973) in which the
score on a routing test determines the appropriate measurement test. One
example of a re-entrant strategy is the flexilevel strategy (Lord, 1971b;
Weiss, 1974). In the flexilevel test, items are ordered by difficuity and
testing begins in the middle. If the items are split into an easy subtest
and a difficult subtest, administration branches back and forth between
them, branching to the difficult subtest after a correct response and to
the easy subtest after an incorrect response. The stradaptive strategy
(Vale & Weiss, 1978), another re-entrant form, groups items into several
strata and branches to a more difficult stratum after a correct response,
or to an easier stratum after an incorrect one.

A concept basic to the inter-item and inter-subtest branching
strategies is the subtest module. An inter-item strategy branches among
subtests that contain one item each. Inter-subtest strategies branch
among subtests that contain several items. This allows the possibility of
leaving the subtest to administer other items and then returning to i1
later. A pointer must be kept to indicate where the subtest should be
re-entered.

A pyramid or a Robbins-Monro strategy is simple to set up. A
structure is built such that each item response (or a correct-incorrect
category set) leads to a specific item. The specification process requires
only a means of specifying the branch locations. A two-stage or a i
multistage strategy is identical except that some means of defining subtests
is required. With subtests defined, the structure specification is identical ¢
to that of the inter-item strategies. :

Although it has not been done, it is reasonable to consider subtests
within which the branching is non-linear. A stradaptive test with strata
administered by the flexilevel strategy is an example of such a possibility.
in that case, the number administered and the number correct would be
required to determine where to return. Other intra-subtest branching
strategies could also be considered.

Unidimensional IRT-Based Branching Strategies

Most of the currently popular strategies are model-based t -anching
strategies. They are based on a statistical model, called item response
theory or IRT (Birnbaum, 1968; Lord; 1980), which relates item responses
to ability. IRT-based testing models typically administer an item based on
some ability estimate and use the response to that item to improve the
ability estimate. They then choose another item based on that estimate,

—— e oy -

..15_

R e LT Ve PR I RN R .=




and repeat the process for a fixed number of items or until the estimate
becomes sufficiently precise.

Conceptually, model-based testing strategies are simple to administer;
the item expected to most improve the estimate of ability is selected and
administered, the ability is re-estimated, and the process is repeated.
Practically, the difficulties arise in determining which item is expected to
most improve the ability estimate and in estimating the ability. Both

processes are dependent on the statistical model used and most are based
an IRT.

IRT models. IRT refers to a family of psychometric theories that
express the probability of choosing a particular item response as a
function of an underlying trait or ability. The model most often used for
CAT is the three-parameter logistic model (Birnbaum, 1968).

In the three-parameter logistic model, the item is characterized by
the three parameters a, b, and c. Ability is characterized by a single
parameter, theta. The a parameter is an index of the item's power to
discriminate among different levels of ability. It ranges, theoretically,
between negative and positive infinity but, practically, between zero and
about three when ability is expressed in a standard-score metric. A
negative a parameter means that a low-ability examinee has a better chance
of answering the item correctly than does a high-ability examinee. An a
parameter of zero means that the item has no capacity to discriminate
between different levels of ability (and would therefore be useless as an
item in a power test). Items with high positive a parameters pravide
sharper discrimination among levels of ability and are generally more
desirable than items with low a parameters.

The b parameter indicates the difficulty level of an item. It is scaled
in the same metric as ability and indicates what value of theta an examinee
would need to have a 50-50 chance of knowing the correct answer to the
item. This is not, however, the level of theta at which the examinee has
a 50-50 chance of selecting a correct answer if it is possible to answer the
item correctly by guessing.

The c parameter indicates the probability with which a very low-
ability examinee would answer the item correctly. It is often called the
guessing parameter because it is roughly the same as the probability of
answering the item correctly if the examinee does not know the answer and
guesses at random. Intuitively, the c parameter of an item should be the
reciprocal of the number of alternatives in the item. Empirically, it is
typically somewhat lower than this.

All four parameters enter into the three-parameter logistic test model

to determine the probability of choosing a correct response. The formal
mathematical relationship is given by Equation 1:

-16-

- mm—— e




where:

P(u=1l8) = c + (1-¢) ¥[1.7a(6-b)] [1]

¥(x) = 1/[1+exp(-x)}]

In Equation 1, u = 1 if the response to the item is correct and u = 0 if
the response is incorrect. The relationship expressed in Equation 1 is
shown graphically in Figure 1. The item characteristic curve drawn with
a solid line is for an item with a = 1.0, b = 0.0, and c = .2. The slope
at any point is related to a. The lower asymptote corresponds to a
probability or ¢ of 0.2. The item characteristic curve shown with a
dashed line is for an item with a = 2.0, b = 1.0, and ¢ = 0.2. The
midpoint of the curve has shifted to 6= 1.0. The slope of the curve is

steeper near 9= b. The lower asymptote of the curve remains, however,
at 0.2.

=9E0IP> ~00==0) 0 C+r==wu-gPRTO~T

Figure 1. Item Characteristic Curves

1.0+
i
|
!
8-
A
‘ -
-’ az 10
-" ----<£bl°
-
2 -------------‘—‘ c=.2
a 20
-e---bri0
cs.2
1 4 T T Y : _
-25 15 -5 0 5 18 25 ‘
Ability

-17-

m mme— e s



Several other models can be obtained by making minor modifications to
the basic three-parameter model. If the guessing parameter (c) is set to
zero, it becomes the two-parameter logistic model. If the discrimination
parameter is also set to a constant, it becomes equivalent to the
one-parameter or Rasch model. If the cumulative-logistic function is
changed to a cumulative-normal function, it becomes a one-, two-, or
three-parameter normal-ogive model. Computationally, the logistic and
normal-ogive models are nearly equivalent. Scoring is simpler in models
with fewer parameters.

Samejima (1969) suggested an extension of the dichotomous model to
what she called the graded-response case. The graded model is useful for
categorical-response items in which the categories are ordered in difficulty
or trait level. This model might be used for answer-until-correct ability
items, like-indifferent-dislike interest items, or multipoint rating-scale
items. In this model, the bounds between adjacent categories are scaled
along the trait continuum using one of the dichotomous response models.
The characteristic curves of the upper boundaries then refer to the
probabilities of correctly endorsing a category at least that far toward the
upper end of the continuum. In the case of an answer-until-correct item,
where the categories are the number of choices needed to choose the
correct one, the upper bound for the category of "three tries" would
indicate the probability of answering the item correctly in three or fewer
tries. The probability of answering the item correctly in exactly three
tries (i.e., in the "three tries" category) would be the probability of
answering correctly in three or fewer times minus the probability of
answering correctly in two or fewer tries.

Samejima proposed both a homogeneous and a heterogeneous model for
graded-response data. In the homogeneous case, all response categories
were required to discriminate equally well at their respective locations on
the ability continuum. This assumption was relaxed in the heterogeneous
model. The advantage of the heterogeneous moadel is its ability to
accommodate a wider range of items. The disadvantage of the
heterogeneous model is that it requires estimation of more parameters for
the items.

A model mathematically very similar to Samejima's heterogeneous model
was proposed by Bock (1972) for the nominal-response case. In this case,
the response categories were not assumed to be ordered, although ordered
categories would also fit the model. Bock's model was developed only for
use with the logistic-ogive function. Samejima's could, theoretically, be
used with either the logistic or the normal-ogive functions.

Samejima (1979), dissatisfied with certain characteristics of available
IRT models for use with multiple-choice items, developed a new family of
models. Specifically, she extended the graded models to include a random
response category for examinees who had no idea what the correct answer
to the item was. These models are a theoretical improvement over the
three-parameter logistic model because they extract additional information

-18-

B | T T R

b




from the item's distractors and always result in a unique ability estimate
{the three-parameter logistic models do not). They require several more
parameters for each item and, therefore, require somewhat more extensive
computational effort.

One goal of fair testing is to measure ability with equal precision at all
levels. Toward this goal, Samejima (1980) developed a constant
information model that provided a constant level of information (and thus
equal precision) over a range of ability. Theoretically, such items could
be combined more easily into an equiprecise test than items calibrated
according to other IRT models. Practically, it has yet to be-demonstrated
that the model adequately characterizes any useful item type.

Ability estimation. In an IRT-based adaptive testing strategy,
scoring (or ability estimation) typically takes one of three forms:
least-squares Bayesian, modal Bayesian, or maximum-likelihood. All three
methods are based on the test likelihood function. In IRT, the item
responses are assumed to depend only on the underiying ability. When
that is fixed, item responses are assumed to be independent. The item
characteristic function expresses the probability of choosing a response as
a function of ability. When several items are administered, the item
response characteristic functions can be multiplied together resuiting in a
probability of the overall response pattern occurring at any given point.
When these points are considered as a function, it is called a likelihood
function.

The maximum-likelihood estimate of ability (Birnbaum, 1968) is the
point on the ability continuum corresponding to the maximum of the
likelihood function. It is computed by finding the root of the first
derivative of the logarithm of the likelihood function. The log-likelihood
function is used, rather than the likelihood function, for computational
simplicity.

Modal Bayesian estimation (Samejima, 1969) assumes prior knowledge of
the distribution of ability. A standard normal prior, for example, might
be appropriate if, in a relevant population, ability is distributed normally
with a mean of zero and a standard deviation of one. Modal Bayesian
scoring is accomplished by multiplying the prior probability-density
function and the likelihood function together and finding the ability level
corresponding to the maximum. Practically, the logarithm of this joint
function is used.

Least-squares Bayesian estimation (Owen, 1969, 1975; Vale, 1980) is
accomplished using the same joint function used for modal-Bayesian
scoring. The mean of the function rather than its mode is used in the
estimation process, however.

Item selection. Using an IRT-based strategy, item selection minimizes
the error of measurement following administration of each item. In the
Bayesian strategies, this may be done by minimizing the expected variance

~-19-




of the posterior distribution (Owen, 1969, 1975). In the maximum-
likelthood strategy, it is usually done by maximizing the local item
information (Birnbaum, 1968). Item information, because of its greater
ease of computation, is sometimes used in the Bayesian strategies too.
These two goals are accomplished, conceptually at least, by evaluating the
information or posterior variance expected to result from each item and
then selecting the best item. Practically, more efficient procedures (e.g.,
Vale & Weiss, 1977) are used.

Multidimensional IRT-Based Strategies

Unidimensional IRT requires that all test items measure a single trait.
When batteries of tests are administered using unidimensional IRT, they
must consist of subtests, each composed of unidimensional items. Two
general approaches to the efficient administration of multidimensional
batteries have been taken: the fully multidimensional and the
semi-multidimensional approaches.

Fully multidimensional testing allows the individual items to assess
different latent dimensions (Samejima, 1974; Sympson, 1978) or to consider
multiple cognitive components (Whitely, 1981). These models allow the
most latitude in the types of items that can be accommodated. They would
be extremely difficult to implement because of the computational
requirements. Design of a testing system probably does not need to
consider them, however, since computational difficulties at the item
calibration stage has precluded any practical implementation of these
models.

The semi-multidimensional strategies (Brown & Weiss, 1977; Vale, 1980)
have been practically implemented, however. The semi-multidimensional
strategies, like the unidimensional strategies, require test items to be
grouped into unidimensional subtests. Information from item responses in
each subtest is used to tailor the items in the other subtests. In the
Brown-Weiss procedure, one subtest is completed before proceeding to
another. The various ‘subtests in Vale's procedure may be administered
simultaneously, branching from one to another and back again, as
required. The Brown-Weiss procedure is computationally no more difficult
to implement than a unidimensional strategy. Vale's procedure is somewhat
more difficult because it considers items from all content areas as each
item is selected.

Order-Theory Strategies

Adaptive testing based on order theory is a relatively new strategy.
As described by Cliff {1975), order theory seeks to determine a complete
ordering of people and stimuli from an incomplete set of data. Basic to
the concept is the dominance matrix. An examinee is said to dominate an
item if s/he answers it correctly. An item is said to dominate an examinee
if the examinee answers it incorrectly. A binary matrix of dimensions

-20-




ﬂ

(persons + items) X (persons + items) can be constructed from these
binary dominance relationships. By powering this dominance matrix, a
complete matrix of dominance relationships can be recovered from a partial
matrix of relationships, if a sufficient set of relationships exists. Given
sufficient random dominance relationships, the complete matrix can be
recovered. "Sufficient" will typically be more than a minimum number of
relationships, however. The goal in interactive testing based on order
theory is to complete the dominance matrix with a minimally sufficient set
of dominance relationships.

The mathematical operations involved in accomplishing this task are
formidable. Fortunately, computer programs have been developed to
perform them. TAILOR (Cudeck, Cliff, ¢ Kehoe, 1977) is an interactive
program for simuitaneously ordering a set of examinees and items.
TAILOR-APL (McCormick & Cliff, 1977) is an interactive program for
determining the order of a single examinee after a group of examinees and
a set of items have initially been simultaneously ordered.

Mastery Testing Procedures

Mastery or achievement testing typically has one of three objectives:
{1) determination of an individual's level of achievement or trait status,
(2) classification of an individual into a category (i.e., master or
non-master), or (3) determination of the change occurring in an
individual's trait status over a period of time. Procedures for the first
objective are identical to those used for ability testing and will not be
discussed here.

Both conventional and IRT-based procedures have been used for
mastery-classification decisions. The classical procedures are typically
based on Wald's (1947) sequential probability ratio test, which was
developed to detect breakdowns in production equipment. Wald's
procedure is a likelihood ratio test applied to a sequence of Bernoulli
trials. It provides a basis for making classification decisions with a
specified error tolerance. As applied to test items, it is unrealistic
because it assumes they are all identical. Wald's procedure has,
nevertheless, been expanded into testing strategies.

Ferguson (1970) used the procedure to determine mastery position in a
hierarchy of objectives. A hierarchy of learning objectives was first
explicated. Then tests were developed to assess mastery at each mode in
the hierarchy. Within a modal test, Wald's procedure was used to make a
mastery classification in as few items as possible. Computationally,
Ferguson's procedure presents no difficulties to a testing system and can
probably be handled within the context of other strategies discussed thus
far.

Kalish (1980) extended Ferguson's strategy by using archival data to
predict responses to unadministered items from a limited set of

-21-

e T




i

administered items. Specifically, he attempted to find, for an examinee, a
matching sequence of items in the archival database and then make
predictions about items yet to be administered. Kalish's strategy could be
quite difficult to administer efficiently because it requires a database
organized by unique response vectors and this could require a large
amount of storage.

Kingsbury and Weiss (1979) developed a mastery-testing extension of
Owen's (1969, 1975) Bayesian testing strategy. The testing procedure was
identical to that used for measurement (as opposed to classification).
However, the procedure terminated when the decision regarding whether
the examinee was above or below a cutoff could be made with less than a
specified amount of error. Administratively, this procedure is only
slightly more difficult to implement than the original Owen strategy.

A Survey of Potential System Users

Interviews with Potential System Users

Twenty-seven individuals from seven different organizations were
interviewed to gain insight into potential testing needs and problems not
apparent from a review of the literature. The organizations included
Educational Testing Service; Psych Systems, Inc.; the Navy Personnel
Research and Development Center, San Diego; the Air Force Human
Resources Laboratory, San Antonio; the American College Testing
Program; the Naval Training Center, Great Lakes; and Continental Illinois
National Bank. This sample represented a relatively wide range of testing
applications ranging from individual testing to testing of large groups, and
from selection testing to course-achievement testing.

Each person interviewed was given a brief description of the project
and its objectives as well as a preliminary design for a microcomputer
testing system. The design presented listed a set of system components
including a processor, a disc, a terminal, and testing software. The
interviewee was then asked to suggest what special characteristics a
testing system might require for his/her application. S/he was further
asked if s/he had any experience with similar systems and, if so, what the
strengths and weaknesses of these systems were. The highlights of the
interview responses are presented in five areas below.

System hardware. Comments about hardware fell into three areas:
analog input, security, and external interfaces. The most common form of
analog input desired was the joystick. There was some concern regarding
cost, however, because joysticks of laboratory quality can cost $2,000.00.
Light pens were not considered an acceptable form of input, primarily
because examinees tend to chew on them and thereby destroy them.

Touch screens were considered a good alternative to light pens when they
provided sufficient response resolution.

-22-

e




[

Theft was a major concern in the area of machine security. The
suggestion was made that the testing systems be equipped with an alarm
and, further, that the storage media (e.g., discs) have some means to
prevent people from reading them on other systems. In addition, there
was some concern that examinees would "experiment" and press buttons
they should not touch or even pull floppy discs out of drives if they were
part of the testing terminal. Outright vandalism was not considered to be
a serious problem.

Several potential interface requirements were suggested. The most
common was the videodisc interface. Others included special-purpose
devices such as a desk-top flight simulator.

Test authoring. Several of the individuals interviewed had experience
with either computerized testing systems or with courseware development
systems. Most of the courseware authoring had been done using an
author language. Most test development had been done with
special-purpose programs written in a standard programming language.
Some interviewees noted that it was difficult to get people with little or no
programming experience to develop tests or courseware using an authoring
language.

Potential applications. Several potential applications for a
microcomputer testing system were suggested. These included clinical
assessment of personality and psychopathology, individualized selection
testing, computer-assisted-instruction and achievement testing, and
computerized counseling. A stand-alone microcomputer system did not
appear to be applicable to large-scale group testing (e.g., for college
admissions).

Item types. Most of the item types cited in the interviews were
discussed previously in the literature review. The only new type
mentioned was one with sequentially dependent keying. In such an item,
the correct response to an item is dependent on the examinee's responses
to previous items. For example, in a medical simulation "hold for further
observation" may be an acceptable response unless the examinee has, in a
previous item, administered a drug that stopped the patient's heart. The
sequentially dependent item provides a distinct challenge in developing a
testing system.,

Testing strategies. No new testing strategies were suggested in the
interviews. Interviewees who were engaged in achievement testing
generally were content with a system that allowed inter-item branching.
Although some interest was expressed in newer models, most interviewees
interested in adaptive testing had no immediate plans for testing strategies
based on anything other than one of the logistic models.

-23-




A Questionnaire Survey of Potential System Users

A questionnaire was developed based on ideas obtained from the
literature review and through interviews with CAT researchers. The
questionnaire, reproduced in Figure 2, contained 28 questions grouped
into four sections. The first section, which contained nine questions,
focused on test characteristics and was to be answered by individuals who
are responsible for test development. The second section contained nine
questions and focused on test administration; answers to these questions
were solicited from individuals who were responsible, directly or indirectly,
for test proctoring. The third section, System Procurement, asked how
much a system should cost and what features it should have. It was
intended for individuals who were responsible for purchasing or ordering
systems such as this. The fourth section, Test Development, was
intended to assess the familiarity with computers of those individuals who
would be involved in the actual implementation of tests on the system,

A list of potential system users was assembled from various mailing
lists and lists of participants at conferences that emphasized the use of
computers in testing. The final list contained 108 names. Questionnaires
were mailed to all of these individuals. Each package contained a
questionnaire, a stamped addressed return envelope, and a perscnalized
cover letter explaining the project and the purpose of the questionnaire.
The letter asked that the questionnaire be returned within one week.

By the end of the third week after the original mailing, 40 completed
questionnaires had been returned. In addition, 10 individuals sent notes
or letters indicating that they did not feel that they should respond to the
questionnaire because they were not directly involved with testing or
because they did not want to influence the results of the survey. Five
more questionnaires were returned by the post office because the
addressees had moved. By the end of the third week, 55 questionnaires
had been accounted for.

A follow-up letter, along with an additional questionnaire, was sent to
the remaining individuals. This resulted in ten more completed
questionnaires. Analyses were performed on the 50 completed
questionnaires.

Individuals usually responded to some but not all sections of the
questionnaire. This was expected because not all sections applied to all
individuals. Missing data were handied systematically for each item, but
the method differed from item to item. In general, there were two
methods of deciding if data were missing. Unless otherwise noted in the
text, if an individual responded to any item within a section, s/he was
assumed to have responded to all items in the section. Thus, the
percentage of endorsements was computed using the number of individuals
responding to the section as the denominator of the fraction. The
exception to this was in the computation of means of numbers (such as the
length of a test) where the data were considered missing if the item was
teft blank.

_za..




Test Characteristics. The first three items in the Test Characteristics
section dealt with test length. Forty-two individuals responded to the
first question about the length of their longest test. Lengths ranged from
16 to 1,000 items. The mean of the forty-two responses was 138. The
mean is not particularly informative for system design, however, because a
system must be able to accommodate unusual cases. Percentile points were
thus calculated for the seventy-fifth, ninetieth, and ninety-fifth percentile
ranks. For this calculation, percentile points were defined as the value at
or below which the specified percentage fell. Thus, a system designed for
the seventy-fifth percentile point would accommodate 75% of the
respondents. The seventy-fifth, ninetieth, and ninety-fifth percentile
points for the first question were 150, 250, and 329 items, respectively.
As with the means, these percentile ranks were calculated using only the
individuals responding to the item.

Thirty-one individuals responded to the second question about how
many items their adaptive pools would contain. The mean response was
1441 items and the three percentiles were 000, 2500, and 10000 items.
Thirty-seven individuals indicated the average length, in English words,
of the items on their longest test. The mean length was 109 words and
the percentiles were 150, 326, and 400. Thirty individuals responded to
both the pool-size and the item-length questions. The pool size, in
words, was taken to be the product of these two answers. The average
of this product was 160,700 words. The three percentiles were 90,000;
180,000; and 1,200,000 words.

The remainder of the first section was concerned with the item types
and the scoring and item-selection algorithms that were required by the
respondents. Forty-four individuals responded to this section. Asked
whether any items required a timed stimulus, 59% responded that none did.
A simple timed display was required by 36% and a moving display was
required by 5%. Only 14% said that their items did not include any
pictures. Eighty percent said their items contained line drawings, 41%
said they included shaded drawings, and 9% said they contained moving
pictures.

In response to the item asking what item-selection strategies they used
or might consider using in the future, 91% indicated that they would use
conventional tests, 36% said that they would use mechanically branched
adaptive tests, 68% said that they would use statistically branched adaptive
tests, and 18% said that they would use implied-order-based branching.
For conventional scoring methods, 80% said they would use number-correct
scoring and 46% said they would use formula scoring. For unconventional
methods, 50% said that they would use maximum-likelihood scoring, 52%
said that they would use Bayesian scoring, and 9% said that they would
use implied-order-based scoring.

The final question asked what item-response-theory scoring methods

they would use. Thirty percent said that they would not use any.
Thirty-nine percent said that they would use Rasch scoring.

-25-

- . i T T S ST




—
[T7Y
laeandmod
28YI0UP UC PRSI BQ 0V URD I] INYI O8 PP ®q UOY JUy 1893 PINOYS

on
oL
888208 pezjaoyinsun Jusadid meisis sy3 pynogs

asqious 03 £330 WO WO

£330 v UTYIpa 20u30uw 03 BUIPTING VO WOIF

SUIPIING ® TIYITA ABY3J0U¥ O3 WOOI PUO WOIF

‘poacm 8Q 1sasu 30 Are1w1 TIIM 31
ipeilodsunay aq o3 L1ayi1 Juamdynbe ayq2 o7 awj moy ‘yjuom ywopdLy ® uy

[T

*3¥ qiga ySnoz Lyjawesedauun 9q jou L1qwqozd T Leyy
*Kawssedeu usyl I9pawy #13a8Y [Td 30 sUOIING Pund Lve Leyr
*(31 vo sPury3 1TTde ‘S2) asfwewp TRIUSPIOOW IDFIFuUT Lem Leyl

*(3% WA ‘Se) sBewsp jvrsqyrep IDT[Jus Lem Leyy
{we3ske 3y3) O IDFTJUF SSPUTEWXS Y3 [[IA I¥E] PUP IPIA YONE AOH

(4333uep1) 1wy30

sBugiys ssuodsex juriisqy
Suypuodsel wopuwy

skwep d:

o uoqnqlcuc
uw JUTI0ITUCE STTYA IDPIIP 01 PIQW Iq WeISL® Y3 PINOYE SUOTITPUOD IPYN

u3IIde An3wis $,303501d ¥ uo sfwssem Y
TPUTRI) S, 23ulmMEXe PYy3 Uo ISy VY
[PUFHIIS] €,3%UTEEXS I TO INIING V

{91qno13 Suyasy 97 vuywwxa UP 3wyl 101303d 1 (vulis wWAIsKs W) prnoys moy

avasu 10 L1a1wy
AyTRuoTS¥OQ
L1Tenen
iweisds Sui3isel Iyl 10 31893 w3
IR 9TqQnO13 JUTARY SIFUTEEXD ISISER O3 ITQRTIPA® A[IPwdl aq 103903d ® ITIA

SpuCI®s ¢ UFYJ BIOR
SpuoOes ¢-7
spuodas z-

puodds [ uwy3l esd]

{8937 3x3u Y3 JO UOIIWIURELId ay) puw
asucdesl §,90UTEEXI UP UIIAJIQ IIVIIT0] uED noL Lerap IsaBuoy Sy) s} ey

s89y110)
100429 y3IH
Tooyds apwid
To0yIs-91d
13891 TTEA NOK SaaUTHEXD Y] JOo STPAS] AITTTQP [Paaual a3yl sae vy

B R

seanpedoad Sutioos puw Burissl sy3 af[iepun STSPoE Lioeql-ssuodsey-me3l] IPUN

uy Sugsn Jepysucd nok JyBym 10 Buren Lyjusiind nok saw spoyrsm Puiiods Ieyp

30 Sujen L130012n0 nof szw sIrFejwiis SujieeI 10 SPOYIWE VOTIDNTIS-BIIT] IPYA

ssnodssa snonwIINo)
ssuodssa snomoIoy£10d pepeay
weuodess snomoloydL1od TRuTwON
d qOIPp 28 d-¢
e d-7
gy
saon

i{eaning g3 uy ssn JgSre 3o Bupsn L13ueiamd Baw nok Iwyd

Sujiods Kiomyi-19pi10

Sujaods usgssieg

Sujiode POOYTTIN] T-BNEFRUR

Suji008 $IMEIO} [PUOFIVSATOD)

03008 30813103-29qQUNKI [FUOT IVBAVE)
isanang wy3

Suyyouriq Peseq-spao-petidE]
(vopasmaojuy ¥ ‘8s) Supy q TwdjasjIvag ,
(Teprwmaid ‘$s) Supyouwaq TEIFURRINR !
$(Spury 3WgA) 83883 sajidepy
(eousnbes @SIT POX[]) $18831 [PUOTIUSAnO)
anIng eyl uy Suien ispisuod nok Iysrm

sean3dyd Suraon
s210303d pepeyg
sSuinezp sup]
:(spuyy Jwya) eax
ol
i%9an301d epnyour swe3y ined jo Luw og

(130301 Ifnsand ‘Se) Lepdeip Jujsom ¥
Letdotp pewyy ‘Surfuwyoun uy
t(spury IWya) sex

oR
{SNINET3S W3] W3 JO UOFIRIusseid pewyl ¥ sagnbaa si1sw3 inod jo Luw og

spaon {uyP3vod Jood We3} 30 1883 3IsePuol inok Ul sWeIT 3
30 yows op ‘sBeisa® 33 uo ‘spion ysyyiug Luwm Aoy

L2} {100d w83} 1se8aw] inok Ul 3G TTIA SWRI] Luem AOY
‘21893 pRao[Iv] 10 sAfIdepe ssn 01 uwyd 10 s nok 31

=031 131893 1838u0] 1IN0k uj papnrduj 1w swely Luse
Aoy ‘031893 Y3JUS|-PEX}] TEUOTIUSATOD ¥sn nok 1

“SISKL SNIOTEANE W0 SHLIONTE' B0 FMISNOISEN
SV 80X 41 WOLIJES STEL AT SEOLLSNOD SNI TSIV — SILISTEDVIVE ISE

q.

IYIYNNOLLSING WILSAS ONILS3) QIZIHILNIWO)

5
|
|

*7 N9l




9I1gS w3ossvupy ‘Ineg °*3g
90€ 33ng ‘snusay L3psasarun C6EZ
UoFINI0d10) swe3Isig Jusmssssey

*Lsains 100 yIga sn Bupdyey 10; ujede nok WY A ‘swmu

anok sagf 03 ssooyd NOL J0® 10 ISYINYR ‘o8 op ©3 saspuymea L1esssdosuun
nok Sujpuss wo1j sn jJusasid puw sapsutorIsend syl psuanjaz ewy oya
UTNINIP 03 sn drey [TIA 37 Inq ‘[Puofado ST MOTSqQ PUFT Y3 U seeu anok
Suypraoag *sajwnuorIsIND 2TY3 #307dwod> 03 Wyl 3 Furye3 10 nok Uy

:TUIVENOIISEND STHL GYLTIAN00 FAVH NOX NIRA

B b é&;

o

*OIqTXITF 899] 3Py o1 Ing 1 10y us
UFgl esn 03 I9FEES AIIPOTdLI 5) WeIsde nuss ¥V “sisasus seyiddns asdorsadp
3933 a3 pue suoyisanb sxysv wslsds nusm V ‘1683 ¥ sIINTUTEPS ‘peInoexe

usgA ‘goTys wwiSoid $uiIsel w 93tan 03 edoysasp 3se3 ® saorTe sfwnBuwy
Joyane Uy “NVILE0d *X77 s¥enBuwy asodind-Teisusd ® uwyl sen 031 ieysve ST QOTYa
‘sfenSue] SureweiSoad osodind-Teioeds » 7 o¥enRusy doy3ine uy ‘we3sis nuew
® Supsn £q o7 iy3o ey3 ‘{afenBuey Ioqine we ySnoayy sy sug °peasIsuIEpe puw
PRINIONIIN 3q 03 ST 1893 v Aoy Supkjroeds JOo spoyIsm (wisual oal saw saeyl : 310N
sdusieyead oy
w3sde nues ieysag
ofenBusy ioyine 1e3say
("9oUBIBJ31p 343 YA 2eFTTEE] 300 Baw nok T AOTeq S30U ®3 eeg)
{u833ks nuse v 10 sPenfuey i0oqine ue Suien sIvey doysasp 03 1833d nok og

(10712 ‘¥9) afenSuvy 1oyane ue Suyen 1eAReINc)
sBwnSuvy L1quesse us Bursn suopiwoyrddy
NVIINOd 30 ‘Teoswd ‘OISVE Buysn suoyisojrddy
(88ds ‘3») swwaSoid pafexowd Suisn [eo7IsyIvIS
:(owwa303d jo puyy IJwys) se;
*swe1B0o1d 293IndWOD UIIITIA ieAsu ARy I ‘ol
(oue1301d 19Indwod USIITIA Nok samy

| TH]

(o1ddy ‘384 “33) s183ndE02010TH
(0001 4B ‘11 4ad ‘Se) sie3ndwodjurN
(1 &w1) “‘09¢ WEI 'S@) sisindmo) eBxw]
(omdisds jo spuyy Iwya) se;
*suwi201d 193ndW0> unz imadu ARy I ‘oN
iswe3801d 193ndwod unz nok saey

on

[0
i982md jo se1j peysyuan siam IF JT wey3 3o suo Suyliy U] perssaviu} oq mok
PINON "3898 PISI) 03 YT PInOA sa Ivyl sWe3sds (303010 smos savy Lve o

(008$~002¢) Buyeesdoid piog
(005’ 18-002¢) sweisss Supjuncody
(00y$-00Z¢) saeyydmo)

8007240 81BA3jof [wisus)

(000° 1$-001$) 3ezyseqauds sojos
(002$) 103wasusl suo3 TEITeTY
ouo33do nding

(000°$$-005$) wojajuBodsa soyos
(00Z° 1$-005$) ueeads yonoy
(009$-00Z¢) I®TFurs J0 ‘[I9q¥Ie1l ‘Royiskor
(00z8) pasoqiay peijyydeyg
suojadp Induy

(000° 1$) #8an3od S>ep 10 sdwy oepya
(000°9¢) s9an31d1d 10100 pepeyg
(000° ¥$-000° 2¢) sBupaeap suyy 10709
(000°1¢) Aruo 3x®3 — 30710)
(000° 1$) sSupawip suyy s374a 9 yowyg
Te3531p vojInTOoRR-ySTH
svoradp Leyrdeyq

isweisds D7SPQ a1 Jo sWOS uUT SPRTOUF 01 eRIT nok
PInoa ‘sesaqiusaed uy peleyy swojad sy3 I ‘swojrdo JaINoTTI0] Y3 Jo Yopup

sue3oke 000°01$ ©3 000°S$
swe3sse 000°€$ ©3 000°¢c$
smoyalse 000°C$ ©3 000°T$
meisks 000°Z$ 2epun

(®amn3jos pue sayap xerp

®13xe enyd jusmdynbs saoqe sepniouy — sdIydead ou pue
suojlsend [enixe3 AWy Iwyl 8393 INISFUTEPE puw doyeasp
03 padu nok Buryilioaw) weisds jJusedorsaep 3se3 oyswg

sua38de 000°01$ ©3 000°'S$

ma3nde 000'S$ ©3 000°‘c$
sma38de 000°c$ ©3 000°Z$
swisls 000°Z¢ aepupn

(991qdva3 ou pur suojasend [PNIXe sasy Iwyy
$35%1 I938TUTEDE 03 -~ BIBAIJOF PUR ‘IATIP XNIP ‘LUD ‘AdD
-- Po%u nok Buryilisas) weisis worieiisfurwpe 1993 Jrewg

iowdyad
Supao1103 Y3 3® Jupdng i9pIsucd nok prnon sweisis Sujase) d1seq Luve aon

SREISIS SNON WO SN0 BSVIDEAJ OL ISWAbLY Vv EIVIIINY
1800 20X 41 WOLIDBS STEL N1 SNOLISESD M WV — JCNEEOON MELSIS

-

-




Twenty-seven percent said that they would use the two-parameter logistic
model and 71% said that they would use the three-parameter logistic model.
For the more sophisticated response models, 23% said that they would use
the nominal logistic model, 18% said that they would use the graded logistic
model, and 21% said that they would use the continuous logistic model.

Test administration. The second section of the questionnaire
addressed the practical considerations of everyday administration. Forty-
three individuals responded to this section.

The educational levels of examinees for which the system would be
used were primarily high school and college. One respondent said that
the system would be used at the pre-school level, 26% said that it would
be used at the grade-school level, 77% said it would be used at the
high-school level, and 65% said it would be used at the college level.

Forty individuals responded to the question about the desired length
of the delay between an examinee's response and the presentation of the
next item. Of these forty, 8% said a delay of over five seconds would be
tolerable, 33% said a delay of two to five seconds would be tolerable, 43%
said a delay of one to two seconds would be tolerable, and 16% said a
delay of less than a second would be tolerable.

Eighty-eight percent said a proctor would usually be available to assist
the examinee, 12% said a proctor would occasionally be available, and only
one respondent said a proctor would rarely or never be available.

Seventy-seven percent said that the system should signal that an
examinee was having difficulty by sending a message to a proctor terminal.
Twenty-eight percent said that a light on the examinee's terminal would be
acceptable. Sixteen percent said that a buzzer on the examinee's terminal
would be acceptable.

When asked what problems the system should be able to detect
automatically, 84% said it should detect unreasonably long delays in
responding, 56% said it should detect random responding, and 62% said it
should detect aberrant (i.e., unusual) response strings.

When asked how much abuse the system might receive, 26% of the
respondents felt that the examinees would not be unneccessarily rough
with it, 67% thought that they might push buttons or pull levers harder
than necessary, 54% thought that they might inflict accidental damage such
as spilling things on it, and 23% thought that they might inflict deliberate
damage on it.

Fifty-six percent of the respondents said that the system would rarely
have to be moved once it was installed. Twenty-eight percent said that it
would be moved from room to room, 19% said it would be moved from
building to building, and 19% said it would be moved from city to city.




Regarding system security, 91% said the system should have some
feature to prevent unauthorized use and 63% felt that the system should
encode the test information to prevent it from being read on another
computer.

System procurement. The third section attempted to determine what
features would be desirable, when weighed against their cost. This
section was designed to be completed by individuals who were in a position
to buy or authorize the purchase of a system. System features were
listed along with their approximate price and respondents were asked
which features they would like to buy.

The first two questions dealt with basic systems. The first listed the
basic test administration system, capable of administering but not
developing tests. Four price ranges were listed (under $2,000; $2,000 to
$3,000; $3,000 to $5,000; and $5,000 to $10,000) and respondents were
asked to indicate how many of each they would consider buying at each of
the price ranges. The second asked the same question about a system
capable of developing tests. Responses to these items were rather
difficult to interpret because of some aberrant response tendencies. First,
some individuals responded with an X instead of a number; the X was
replaced with a 1 in these cases. Also, some individuals indicated that
they would buy more systems at the higher price than at the lower prices;
in these cases it was assumed that, if they were willing to buy a certain
quantity at a high price, they would be willing to buy at least that many
at a lower price and their responses were adjusted accordingly.

In response to the first question regarding the basic system, the 38
respondents indicated that they would buy 4,230 systems at $2,000 or
less. However, they would buy only 4,208 systems if the price were
$3,000, and they would buy 3,532 for $5,000 each. Respondents indicated
that they would buy 3,080 systems if the cost were $10,000. These
figures for the test development system were 3,484; 3,467; 3,056; and
3,041. These values must be interpreted with caution in both cases,
however, because a single respondent indicated a desire to purchase 3,000
systems; this number overwhelms the responses of the remaining
respondents. The totals of 1,240; 1,208; 532; and 80 for the basic
administration system and 484, 467, 56, and 41 for the test development
system may be more appropriate. The second set of figures shows a
sharp break as the system costs rise above $3,000 and may suggest a
target price for the system.

The remaining questions dealt with specific features. Seventy-four
percent wanted black-and-white line drawings, 29% wanted color line
drawings, 24% wanted shaded color pictures, and 53% wanted video tape or
disc pictures. Only 8% needed color text displays. For input methods,
71% wanted a simplified keyboard, 32% chose an analog device such as a
joystick, 50% wanted a touch screen, and 8% wanted voice recognition.
Eighteen percent could use for a musical tone generator and 29% wanted a
voice synthesizer. Sixty-three percent wanted the system to support

-29-

e e e e e



high-level language compilers, 40% needed word-processing capabilities,
and 13% thought an accounting system might be useful.

Eighty-four percent of the respondents indicated that they would be
willing to try the testing system if it were made available to them free of
charge.

Test development. The fourth section attempted to assess the
familiarity of potential test developers with computers. Three questions
were asked and 49 individuals responded.

The first question asked what types of computer systems the
respondent had used. Only 4% (two respondents) had never used a
computer. Eighty-four percent had used a mainframe computer, 67% had
used a minicomputer, and 67% had used a microcomputer.

The second question asked if they had written computer programs.
Six percent had not written programs; 80% had written package programs
(e.g., SPSS); 92% had written BASIC, Pascal, or FORTRAN programs; 33%
had written assembly language programs; and 16% had written courseware.

The final question described menu and author language methods of test
specification and asked which they would prefer. Thirty-nine percent
preferred the author language method, 29% preferred the menu system,
and 33% had no preference.

Recommended System Characteristics

From the information drawn from the questionnaire and the literature
review, the general characteristics desired for a microcomputer-based
testing system can be described. These characteristics have been grouped
into four areas. The first considers the characteristics neccessary for the
system to store and administer the types and quantities of test items
required by the applications considered. The second includes the
characteristics required to ensure that computerization of testing is cost
effective and convenient when compared to conventional paper-and-pencil
testing. The third considers what features can be included in the system
without making the cost prohibitive. The fourth considers means by which
a user can create tests on the system.

Design decisions made from the literature were, Iin general,
qualitative and intuitive. Decisions made from the questionnaire data were
guided by the percentage of individuals desiring a particular system
feature. The cutoffs used for the various features in making system
design decisions are usually somewhat arbitrary. In this analysis, an
attempt was made to set the cutoffs liberally enough to allow a majority of
people to use the system while, at the same time, keeping them restrictive
enough to allow a cost-effective system to be designed. For the initial
system specification, the cutoffs were set at the seventy-fifth percentile

-30-~




for ranked variables such as the amount of storage required. Features
were considered valuable if desired by at least 10% of the respondents.

Accommodation of Tests ‘

Storage requirements. To determine computer storage requirements,
each word is considered to be five characters long followed by a space.
The storage requirements neccessary to accommodate the item banks of the
respondents can be computed by multiplying the number of words by six. ,
The computed average length was 964,200 characters. The seventy-fifth, ‘
ninetieth, and ninety-fifth percentiles were 540,000; 1,080,000; and i
7,200,000 characters, respectively.

Using the seventy-~fifth percentile cutoff, the system must be able to
store a bank of 540,000 characters. This must be on-line storage because
it represents the item bank used by an on-line adaptive test. The
conventional tests described by the respondents are all smaller than this,
so there are no further requirements for conventional tests. The system
will need sufficient additional storage for the system programs and scratch
files and this must be included in the design. A minimum of 100,000
characters should be allowed for this.

The resulting figure of 640,000 characters does not include storage
for graphic items. Depending on the number of pictures and types of
compression possible, graphic storage could greatly increase the storage
requirements.

Display requirements. Table 1 presents an analysis of the required
and desirable stimulus presentation characteristics for each of the item
types, as determined from an intuitive analysis of the item types reviewed.
X's in the table indicate the required characteristic and O's indicate
desirable characteristics. :

Six characteristics are considered and listed across the top of the
table. Character presentation means that the system will have to display
standard alphanumeric characters. Graphic display indicates the system
will have to present drawings. A timed stimulus is one whose presentation
time can be controiled. A real-time stimulus is one that may have several
timed presentations. A dynamic stimulus is one that has motion within a
frame rather than a series of timed frames. Timed and real-time are
considered to be on a continuum; if an item requires real-time
presentation, it also requires timed presentation. An auditory stimulus
consists of voice, music, or any stimulus that must be heard.

The total number of X's and O's is presented at the bottom of the
table and gives some indication of the need to include each of the stimulus
characteristics in a muitipurpose testing system. Of the 30 item types
considered, 28 required character presentation of items. Graphic
presentation was required by 10 and desirable for 11 more. Timed display
was required by 10 item types and desirable for six mora. Ten item

-.31_




Table 1.

Stimulus and Response Requirements for Various Item Types

Stimulus Requirements

Response Requirements

Character
Graphic
Timed
Real time
Dynamic
Auditory

Keyboard

Touch Screen

Light Pen

Trackball

Joystick
Mouse
Wheel
Timed
Real time

Dynamic

Voice

Knowledge
Dichotomous
Answer until correct
Confidence weighted
Probabalistic
Free Responge

X XK XXX
Q0000
00000
00000

X XX XX

00000

Q0000

00000

Cognitive Process
Memory
Concept
Spatial Reasoning
Sequential Memory
Simultaneous Memory
Multiple Item Access

HR XXX X
000 XX
X » X

XXX XXX

Q00000

x XX X X

Perceptuai-motor
Perceptual Speed
Perceptual Closure
Movement Detection
2-Hand Coordination
Complex Coordination
Attention to Detail
Spatial
Coding Speed
Array Memory
Vector Memory
Visual Search
Linear Scanning
Matrix Scanning
Choice Reaction Time

> %
XXX
XXXOX
bad
x X x

XXX X
OXX OO0 X
xx XX

x

x XX

MR R XXX XX

[oX N

QO0O00QCO O

x X

XXX XXX XOOO

x X

Simulations
Prestwood
Robinson & Walker
Kneer
Pine

PR B
x X

X XXX

[~N ol o]

0000

©0OoC

Non-Cognitive
Any

TOTAL
Required
Desiresble

24 10 1010 3 1

-
-~

on 6 0

o N
[N -]
(X ]
~
-

oN

Note: X=required, O=desirable

[ —

s




types required real-time display. Dynamic display was required by three :
types and desirable for one more. Auditory presentation was necessary ;
for one type and desirable for seven others.

Although this is only a rough initial estimate of system stimulus ‘
requirements, it appears that a multipurpose testing system will require
both character and graphic display capabilities. Timed and probably '
real-time display capabilities will also be required. A dynamic display ‘
would be useful for at least a few item types. Auditory presentation |
capabilities might be useful but would rarely be required. n

The questionnaire analyses confirm most of these conclusiuns. Using “
the cutoffs discussed above, the questionnaire data suggest that graphic '
displays, both line and shaded drawings, are required. A timed display
is essential but dynamic presentation is not. A color display should be
available, as should a videodisc interface. Finally, a musical tone
generator and a voice synthesizer should be available as an option.

Response requirements. Table 1 also presents the required and
desirable response collection requirements for the 30 item types reviewed.
Eleven response characteristics are listed across the top of the table. A
keyboard refers to either a standard CRT keyboard or a limited response
keyboard including only the buttons required for response to test items.
A light pen is a device for pointing to a CRT screen. To respond to
touch without requiring a light pen, a touch-screen CRT is needed. A
joystick is a2 one- or two-axis analog control stick, similar to the control
stick in an airplane. More sophisticated is the trackball, a free-axis
rotating ball rotated in the direction in which one desires the cursor to
move. A device used to move along a tabletop in a direction analogous to
the direction one desires the cursor to move is called a mouse. A wheel is
a rotary device for moving the cursor along a single axis. Timed
response refers to collection of the time required to respond. Real-time
response refers to collection of responses at several times for a single
item. Dynamic responses refers to a continuous analog response. Voice
response requires the capability to recognize spoken words.

A keyboard was required by 28 of the 30 item types; only two of the
perceptual-motor tests did not require a keyboard. Strictly speaking, a
keyboard is not essential ("required") because a touch panel or any of
several other modes can be used to perform the same function. However,
a keyboard is the most convenient and versatile choice for testing.

A light pen was not required or desirable for any of the test forms;
the touch screen is a better option for psychological testing. A touch ﬁ
screen was desirable for 25 of the 30 tests.

Two of the tests required a joystick. It was neither required nor

desirable for any of the others. The trackball, the mouse, and the wheel
were not specifically required or desirable for any of the tests.

-33-




Timed response was required by 16 of the test forms and desirable
for 12 more. Real-time response was required by two and desirable for
one more. Dynamic response was required by the two perceptual-motor
tests and not desirable for any others.

Voice recognition of auditory responses was not required for any of
the tests. It was desirable for 10 of them, however.

The questionnaire data suggested that the system should support a
simplified keyboard and confirmed the need for a joystick and a touch
screen as input options. The questionnaire did not address the need for
a timed response, but interviews confirmed a definite need; resolution to a
tenth of a second was usually considered adequate. Voice recognition was
not seen as a useful option.

Item selection and scoring requirements. Potential users indicated an
interest in both mechanical and model-based item selection procedures.
Dichotomous, graced, and polychotomous items were all used in sufficient
proportions to suggest that the testing models should handle these types.
Order-theory item selection was desired, but order-theory scoring received
a smaller endorsement. Order-theory testing could probably be
disregarded in design of the system. All other forms of scoring including
maximum likelihood, Bayesian, and conventional methods were desired.

It appears that the most demanding strategies to be implemented are
the maximum-information or Bayesian item-selection strategies coupled with
maximum-likelihood or Bayesian scoring. A system capable of handling
these methods should be able to accommodate all methods of interest.

Test Administration

Using the 10% cutoff for the questionnaire, as before, several
characteristics of the desired system can be enumerated. It should be
simple enough to be used by grade school children. Because a proctor
will usually be present, the system should be designed to interact with
one, ideally by communicating with a proctor's console. The system should
monitor all problem conditions that can be reasonably anticipated. The
delay between items should be less than one second. The system must be
sturdy because it will have to be moved and it may be abused. Finally,
both system and media security appear to be essential.

Affordability

The questionnaire data showed a substantial decrease in demand as
the system price rose above $3,000. The market was so small above
$5,000 that it is probably not worth considering. Thus a target price for
the basic system must be $3,000 or less. Obviously expansion options
must be available since there will be many functions a basic system cannot
support. Such an expanded system should have a target price of under
$5,000.

-34~




N
J
{

Test Development

The final section suggested that the potential users of the test
development system are quite sophisticated in computer use. Therefore,
either a menu or an author-language interface for test development can be

used and some programming knowledge on the part of the user can be
assumed.

-35-




|

ll. DESIGN OF A SYSTEM TO MEET THE REQUIREMENTS

The design of a computerized testing system properly begins with a
review of existing systems that perform the same or similar functions.
The documentation available on current CAT systems was thus reviewed.
Unfortunately, no commercial testing systems existed at the time of the
review and little documentation was available for the few non-commercial
systems that existed. Because computer-assisted-instruction systems bear
some similarities to an adaptive testing systems, several of these systems
were also reviewed.

Functionally, a computerized adaptive testing system should be able
to perform five tasks. Its most basic function is to administer tests. To
accomplish that it must also perform the support functions of item
banking, test construction, and test analysis and refinement. Finally, it
must provide a means of reporting and interpreting the test results.
There is considerable latitude in how each of these functions can be
accomplished. Following the review of the existing systems, the
background and basic design rationale for each of these functions, as
designed in the proposed system, is presented below.

A Review of Existing Systems

CAT Systems

The Minnesota system. A large-scale CAT implementation at the
University of Minnesota was described by DeWitt and Weiss (1974). The
system was developed as a research tool for administering adaptive tests
using a variety of strategies. The system consisted of a set of FORTRAN
programs developed for a Control Data 6400 that administered adaptive
vocabulary and number-series tests. The system, at the time it was
described by DeWitt and Weiss, allowed six different testing strategies to
be administered. These strategies were coded in FORTRAN and were
invoked by entering a seven-character keyword at the beginning of the
test. The system started a test session by administering a branched
instructional sequence (also coded in FORTRAN) and then it branched to
the specified testing strategy.

The Minnesota system was the first major adaptive testing system
developed, and as might be expected, it had some shortcomings. The major
shortcoming was the limited number of strategies that could be used. This
resulted from the fact that the system provided no authoring capability.
All strategies had to be coded in FORTRAN. The development of a new
strategy thus required the services of a programmer and the
implementation of a new strategy, or the modification of an old one, was a
major undertaking.

-36~

"




===

3

-

In addition to administering tests, the Minnesota system provided
extensive reports of the performance of examinees. While this feature is
unusual for a research system, it is essential for an operational testing
system. The Minnesota reporting system unfortunately suffered the same
shortcoming as the testing system -- the specifications for the reports had
to be coded in FORTRAN.

The need for a more efficient method of test specification soon became
obvious. When the Minnesota system was expanded and transfered to «
minicomputer, a somewhat more user-friendy test specification system was
developed (DeWitt, 1976). This system provided a test specification
program that allowed a non-programmer to develop a test by choosing
strategies and item pools. This program did not offer any features for
revising old strategies or specifying new ones, however.

The Civil Service system. One of the most ambitious implementation
projects in the area of adaptive testing was a plan to adaptively administer
some of the tests of the United States Civil Service Service Commission
(McKillop & Urry, 1976). A testing system was developed to accomplish
this. This system differed from previous research systems in that it had
to be capable of administering only a few tests, all of which used a single
strategy (i.e., Owen's Bayesian).

Unfortunately, little more can be said about the Civil Service system.
No complete description of the system was ever published and the entire
project was abandoned just before its inauguration because of a change in
the mission of the Civil Service Commission.

Tne Army system. The Army Research Institute developed a pilot
testing system to evaluate the feasibility of CAT (Bayroff, Ross, & Fischl,
1974). This development effort centered on the design and production of
a computerized testing station consisting of a CRT terminal, a
random-access slide projector, and a response panel. Items were
presented on the CRT screen or on a rear-projection screen used with the
slide projector. The testing station was interfaced to a Control Data 3300
computer which supported the adaptive strategies. This project placed
little emphasis on strategy specification.

The Army system cannot be used for guidance or suggestions
regarding the development of a new testing system. Its major emphasis
was on the development of a testing station which is now technologically
obsolete.

The Missouri system. Reckase (1974) described an adaptiv. testing
system deveioped to implement a single strategy for administe.'ing
classroom achievement tests. This system, like mcst of its contemporaries,
had all strategy specifications coded in FORTRAN. The develogment of a
new strategy was thus almost equivalent to the development of a new
system. This system offers little insight into the design of a new, more

-37-




L ———A

flexible system but exemplifies the systems of its era -- it administered
adaptive tests but offered no flexibility in specifying stategies.

TCL. The concept of an author language is not new, having been
applied in computer-assisted-instruction systems for years. The first
attempt to apply the concept to an adaptive testing system was by Vale
(1981). Vale developed a microcomputer-based CAT system primarily as
a microcomputer CAT demonstration system. Vale's system was designed to
provide (1) a general means of specifying test structures without resorting
to a standard programming language; and (2) a minimal delay (at run time)
between the response to an item and the display of the next item.

The first of Vale's design objectives was met through the development
of an authoring language called Test Control Language (TCL). TCL was a
form of programming language tailored to the task of specifying adaptive
tests. It included single statements to perform functions that would
require many instructions in FORTRAN. Bayesian scoring, for example,
was accomplished by a single statement.

Vale's second objective was achieved by compiling the TCL source to
a simpler executable form. The textual source instructions were converted
to single numbers. Furthermore, complicated statistical searches were
converted to table searches at compile time.

TCL also had some shortcomings, however. In TCL, the items of a
test were too closely tied to the test itself. For example, certain item
characteristics, such as time limits for response to the item, had to be
specified in the test itself as part of the test specification. One could
argue, however, that such characteristics are dependent on the nature of
the item, regardless of which test it appears on. Thus each item should
have such characteristics specified at the time of item creation.

TCL also allowed branching to specific items within a test. This can
make a test specification difficult to follow and to modify. Whenever an
existing item is replace with another, the test developer must then change
all branches to and from the item accordingly.

Vale's TCL system provided no special item-banking tools. The
standard text editor was used. Each line had a single character code to
specify one of four record types. An ideal language would provide a more
user-friendly interface.

In general, Vale's system was a successful implementation of CAT on
a microcomputer. It provided a more modern system design that was
meant for microcomputers, and as such provided a good starting point for
the design of a computerized adaptive testing language and the associated
CAT software. It lacked, however, an ideal design and adequate
documentation for commercial use.

~38~

e e g e




S e M e e e e

e

L T e
\ .

CAl Systems

Computer Assisted Instruction (CAl), or Computer Managed
Instruction (CMI1), is a field that deals with many of the same issues as
CAT. CAIl systems must present material to students in much the same
way that CAT must present items to the person being tested. CAIl also
does a certain amount of testing in which actual test questions are asked.
It uses information obtained through this testing to determine the speed
with which new material can be presented to the student.

CAl systems offer some insights that carry over to CAT. One of the
strongest areas of carry-over is the area of authoring languages and
procedures. These are the languages and procedures used to build the
lessons that are presented to the students.

SILTS. SILTS (SILTS User's Manual), the Scholastic Interpretive
Learning/Testing System, is a CAl system used primarily for developing
games and simulations. Its authoring system is of interest here primarily
because of its complexity of use. The basic unit in SILTS is a "node"
which is a file containing statements. Instruction in SILTS is authored by
developing nodes using an author language consisting of 37
single-character statements. "P," for example, prints a line nf text; "G"
causes execution to go to a specific node. An initial node could thus list
branches to a string of nodes which could each cause information to be
printed.

SILTS is apparently quite a capable system for developing games and
simulations. The single-character statements with little mnemonic meaning
make it difficult for the occasional author to remain familiar with the
language, however. A set of more mnemonic statements would be a
definite improvement. Fewer statements might also make it more
manageable.

MIL. MIL (Luker, 1979), the Minnesota Instructional Language, is a
CA! system with an authoring system implemented as a FORTRAN
preprocessor. It is essentially a version of FORTRAN that has been
enhanced by the addition of a set of macro-instructions to help the CAI
author. Instructions called key-match operators are examples of the
macro-instructions. These operators accept a user's response and
determine if it matches one or more literal strings. They return a value
of "true" or "false" which can be used in a FORTRAN logic expression.

MIL is obviously more efficient than authoring directly in FORTRAN.
FORTRAN, however, is not an acceptable authoring language because it is
too difficult to learn. MIL is even more difficult to learn because it
requires a knowledge of FORTRAN as a precursor. It thus does not
succeed in allowing test authors to avoid learning a programming language.

GENIS 1. Bell and Howell offer a commercial CAl package called
GENIS | (Bell and Howell, 1979). It is composed of two separate CAl

-39-

U




il

systems. CDS I, the Courseware Development System is the higher-level
system. It consists of a menu-driven authoring subsystem and a
presentation subsystem. The menu-driven aspect of CDS | is fairly
simple. It is essentially a fixed sequence of questions aimed at collecting
the required information. This repetitive and lengthy process may be
unappealing to an experienced author, however.

CDS | provides some simple formatting of textual items. This can be
important to CAl! systems that must present large quantities of text. It
may be less useful for CAT whose major emphasis is testing rather than
instruction. Free-response answers can also be handled by CDS i, though
in a limited fashion. It allows the test author to specify groups of correct
answers, with certain allowable variance in the spelling. That leniency in
the spelling, however, is limited to the explicit specification by the author
of the alternatives, including the use of a wild-card option on selected
letters. This is a process that might better be made automatic, through
the use of any of several current algorithms.

The other half of the GENIS | system is the MARK-PILOT CAlI
system. MARK-PILOT uses an author-language approach to CAl. It is
based on the PILOT language for CAl with some extensions for Apple
Graphics. CDS [ routines can call MARK-PILOT routines but not vice
versa. PILOT, like MIL and SILTS, suffers from being too simple in
design and too complicated to use. Single-letter keywords make it difficult
to read. Further, it fails to introduce any high-level concepts meant for
dealing with CAl.

PLATO. One of the largest and most well-known CAl systems is
Control Data Corporation's PLATO system (Control Data, 1978a, 1978b).
PLATO is an extensive system that allows test items and learning material
to be presented in a variety of media. One terminal used by PLATO, for
example, incorporates a touchscreen, a microfiche display, and extensive
graphics capability.

PLATO allows authoring at two levels. An author language level
allows details of graphic displays and complex branching sequences to be
specified. It is a very extensive language; it is thus very powerful and
requires a good deal of experience to become familiar with it. The second
level of authoring is through the CMI| system. This is a menu-driven
system that allows subject-matter experts to develop instruction or tests
without learning the author language. The CMI system is much easier to
master than is the author language.

The PLATO system is an elegant CAl system, if only for its
completeness and capabilities. For the current design, however, it is its
dual-level authoring capabilities that are most interesting. Ideally, a CAT
system would have a similar system. The author language would be used
to lay out the strategies. The menu system would then be available to
select the items to be included.

~-40~

~ - - mimm v ey o ———— % v A —_

>

y
i

T M



!

Directions Suggested by Current and Past Systems

Two conclusions regarding the state of the art can be drawn from the
review presented. The first is that, untii recently, little emphasis has
been placed on the development of a general-purpose CAT system for
developing and administering tests using a variety of stategies. None of
the systems allowed a test developer with minimal computer knowledge to
develop or modify an adaptive testing strategy. Vale's system represents
a step in the right direction but the sophisticated authoring-language
systems used for CAl suggest that there is much room for improvement.

The second conclusion, drawing heavily upon the PLATO design, is
that several levels of author interfacing may be useful. Testing strategies
may be impossible to specify completely without a complex author language
using concepts similar to those found in programming languages. Such
complex author languages may be too difficult for certain users to master,
however. A simpler, but somewhat less flexible, menu-driven system
should be supplied for use by these individuals.

Test Construction

The test construction system is used to create a test to be
administered by the test administration system. It draws specific items
from the item banking system, incorporates them into the testing strategy,
and selects the information that should be recorded for test analysis and
interpretation. As was suggested by the questionnaire analyses and
literature review, the proposed test construction system includes facilities
for constructing tests either directly through an author language or
indirectly using a menu system to generate the author language.

Author Language

Tests may be specified directly using an author language called CATL
(Computerized Adaptive Testing Language). CATL is a language explicitly
designed for specifying adaptive tests.

Throughout the CATL language, mnemonic simplicity has been used to
guide the choice of statement names, labels, and variables. Statement
names were chosen to describe the functions they perform. Label and
variable names in CATL can be long alphanumeric strings as opposed to
the single-character or numeric names used in some languages. This
allows test developers to use descriptive names, which makes tests easier
to understand. Furthermore, the language was developed to allow test
specifications to be written in a modular style.

A special line-termination convention was used throughout CATL.
Many modern programming languages ignore line structure altogether <9
that statements may continue from one line to the next without a
line-continuation character. Although this makes the language more

-41-




flexible, it requires every statement to end with a statement-termination
character. In Pascal, for example, misplaced statement termination
characters are the most common cause of program errors. For this
reason, a very simple line continuation was chosen for CATL: every
statement ends at the end of the line unless it is continued on the next
line with an & character. This is especially well adapted to CATL tests

since few CATL statements require more than one line.

CATL consists of seven distinct groups of executable statements and
an additional set of statements used by a menu processor. These are
described below. A more complete description with examples is provided
in Chapter 8 of the the draft User's Manual in Appendix A. |

Module delimiters. Myers (1975) discusses "structured programming" r
and "modularity" as ways to divide large programs into smaller programs
that exchange a minimum amount of information. Small independent
program modules are easier to understand than are large complex
programs, but there must be mechanisms to (1) define independent
modules, and (2) pass information between modules. In CATL, the TEST
and ENDTEST statements are used as module delimiters.

Information communication within and among subtests is done through
variables. CATL provides two kinds of variables. Local variables can be
used within a test (after a TEST statement and before the matching
ENDTEST statement) without conflicting with the variables in any of the
other tests. Global variables can be used for information common to all
the tests, or to pass information between tests. Because of the many
built-in adaptive testing features in CATL, few variables should be needed
in CATL programs. This being the case, using global variables has
advantages over passing arguments from moduie to module; argument
passing is fairly complicated and is often a source of programming errors.
Global variables are declared in CATL by preceding the variable name with
a @ character.

Assignment statement. The second group consists of a single
assignment statement, SET. SET is used to set variables, eitherlocal or
global, to expressions including other variables and/or constants. In
CATL, assignment is a minor feature.

Basic statements. The third group includes the basic statements for
inserting comments and for presenting an item or group of items. An
essential part of any programming language is a mechanism for inserting
comments into a program to document its design. The ! character is used
in CATL to mark the beginning of a comment because its vertical nature
graphically separates the program from the comments. CATL allows any
number of characters following an ! to be used for comments. As in most
languages, a CATL comment (preceded by the comment delimiter) may fill
an entire line; unlike many languages' comments, however, a CATL
comment and its delimiter may follow other statements on the same line.
The end of a line terminates a comment. PL/!, Pascal, and several other

-42-




languages require both the beginning and the end of a comment to be
marked with a special character. However, if an end-of-comment marker
is accidentally omitted, the instructions following the comment will be
ignored by the compiler. Allowing the end of a line to terminate a
comment eliminates the possibility of this error occurring.

In CATL the administration of an item is the fundamental operation.
The administration of an item is specified by putting the item identifier on
a line and preceding it by the # symbol.

ltem development and test development are separated to allow a single
pool of items to be used in many different tests; items are not modified at
the time a test is constructed. However, item characteristics included in
an item may be overridden when the item is used in a CATL test.
Removing the specification of items and item characteristics from the
test-construction process simplifies the tests; allowing item characteristics
to be overridden provides flexibility for special applications.

It is often desirable to develop tests or item pools that can be
included in several different tests. An auxilliary include operation (not
actually part of CATL) is provided to accomplish this. The * symbol,
followed by a file name, allows information from another file to be copied
into the test. This statement avoids the need to keep copies of the same
information in more than one test.

Testing-strategy statements. The CATL author language uses several
building blocks or strategy primitives to specify strategies. Complex
testing strategies can be constructed by combining these primitives with
scoring algorithms and conditional logic. The first primitive is post-item
branching. In a CATL test with no branching, administration of each item
in the test proceeds sequentially until the last item (or line) in the test is
reached. Branching allows administration to continue at a different line in
the test, depending on how the examinee answers any of the previous
items. Specifically, CATL permits branching to a different line in the test
depending on (1) whether an item is answered correctly or incorrectly,
or (2) which one of several possible responses to the item is chosen.

The other two strategy primitives use pools of items. The SEQUENCE
statement allows individual items to be grouped together as if they were
logically one item. Each time the SEQUENCE statement is executed, the
next item (starting from the one at the top of the sequence) is
administered. The SEQUENCE is terminated by an ENDSEQUENCE
statement. Item characteristics may be overridden by items within a
SEQUENCE statement in the same way that they are overridden in a #
statement. The SEQUENCE statement itself may contain only branching
information.

Although the SEQUENCE statement is general enough to have several
uses, it is especially useful for implementing inter-subtest branching
strategles. In these strategies, branching is based on an item response.

-43-




CATL uses the same syntax for branching on the SEQUENCE statement as
it does to branch to individual items. The implementation of branching
strategies in other testing languages such as TCL (Vale, 1981) required
pointers to the items in a test. Pointers within a program are very
difficult to implement, and as a result they have been avoided in modern
general-purpose languages. CATL's SEQUENCE statement automatically
keeps track of which items in each SEQUENCE statement have been
administered, so no pointers are needed.

Several different conditions resulting from the administration of an
item (including "correct” or "incorrect" responses) can cause branching to
a different line in the test. Like most modern programming languages,
CATL allows branching only to lines marked with a program label.
Program labels always begin with a $. Branching to labels outside the
test is not allowed.

The SEARCH statement is another specialized adaptive testing
statement provided for model-based testing strategies. The SEARCH
statement is similar to the SEQUENCE statement except that instead of
administering the items in sequential order, it administers the "best"
remaining item in the pool. The best item is the one that provides the
most psychometric information for a given ability level. The SEARCH pool
is delimited by SEARCH and ENDSEARCH statements. Although the
model-based strategies require a great deal of computation, almost all of it
is done prior to test administration. Different model-based strategies may
be implemented by searching on different scores.

Conditiona! statements. The fifth group of statements includes the
conditional statements. Three statements -- IF, ELSEIF, and ENDIF ~-
constitute the conditional group. IF causes execution to skip to the next
ELSEIF or ENDIF unless the specified logical expression included in the
statement is satisfied. ELSEIF functions similarly but must be embedded
in an IF statement. Both IF and ELSEIF branch to the ENDIF after
successful execution of the clause.

Early programming languages used an unstructured |F-GOTO
construct. As languages evolved, the IF-GOTO construct was improved to
an IF-THEN-ELSE construct. The IF-THEN-ELSE is sufficient for
structured programming when used with block delimiters (such as the
BEGIN-END in Pascal). Other languages have adopted an ELSEIF
construct to allow for multiple conditions. CATL combines the advantages
of all these constructs and removes the need for block delimiters with an
IF-ELSEIF-ENDIF construct. Any number of ELSEIFs may be included in
the construct. If no conditional logic follows the ELSEIF, it functions like
the unconditional ELSE in some languages. An explicit ELSE was not used
in CATL so that the number of system keywords could be kept to a
minimum.

Declarative statements. The declarative group of statements sets up
conditions for a test module. The SETSCORE statement identifies the

_u“_

t . e e e+ e e




o .

scoring routines that will be used and the variables that will be used for
the scores. The variables are automatically updated with values from the
scoring routine whenever they are used. In a general-purpose language,
the scoring routine would have to be called explicitly each time the
variable was used, requiring many extra program lines. This has been
avoided in the design of CATL by making the CATL system responsible for
determining when to update the scores. Thus, the CATL system keeps
track of when scores are to be updated and updates them only when they
are used. Scores are not unconditionally updated after every response.

To provide an easy mechanism for ending tests when the given
conditions are met, CATL uses the TERMINATE statement. This statement
was intended primarily for tests using model-based branching strategies
that administer items until the estimate of the examinee's ability becomes
sufficiently precise. The TERMINATE statement may be used in
conjunction with any cther testing strategy, however. Thiz makes the
specification of termination conditions more flexible than it would be if it
were built directly into the SEARCH or SEQUENCE commands. The
design of the TERMINATE statement is consistent with structured
programming doctrines. Although this type of statement is uncommon in
programming languages, it is similar to the structured BREAK statement in
the C programming language.

Qutput control statements. The output control statements provide a
mechanism to permanently store test scores and other data. KEEP is very
similar to the WRITE statement in languages like FORTRAN. In some
testing applications, the values of several variables will need to be stored
after each item is administered. To simplify these applications, the
AUTOKEEP statement may be used to automatically store these variables
after every item.

Menu System

All of the statements described ab¢ve are part of the CATL author
language. Author languages provide much more flexibility than menu
systems, but a test developer must study the author lariguage before a
test can be written. CATL supports a menu system that allows people
with very little programming experience to develop tests. Insteac of
developing an inflexible menu system, CATL menus are actual CATL tests
with "blanks" to be filled in by the menu system. The final group of
statements, the menu statements, allow control of the menu system. The
INSTRUCT statement in a CATL test is read by the menu system, and the
instructions following the statement are displayed for the test developer.
The developer enters his 'her responses to the instructions into the CATL
program at the specially marked places. This unique approach combines
the advantages of a menu system with the advantages of an author
language.

~-§5-

. CVATIRCD A, T “ .

o e



Item Banking

The heart of any testing system is the set of available items. The
process of entering, maintaining, and ordering these items is known as
item banking. First, an item must be created: It must be named and
described, and the body of its text must be entered into the storage
system of the computer. After it has been created, it may still undergo
changes. The author of the item may wish to alter the wording of the
text, change part of the item's description (e.g, parameters) or otherwise
modify the item. These alterations should be made without the need to
re-create the entire item. Making the creation and editing processes
simple and similar to each other is an advantage for the user.

Finally, the item banking system must be able to support specialized
items. Such special items allow the author to make use of sophisticated
options for a CAT system (e.g., videodisc displays and graphics}. Here
again, item banking deals with the entry and editing of such special items.

Item Classification and Storage

Underlying the entry and editing process for individual items is the
file system that supports the organization of the items into useful
collections or pools. items are typically grouped together according to
some criterion, usually pertaining to the subject matter of the item.

Without such grouping, it would be difficult to manage the many items
created by test developers.

Each item needs a unique identifier. In most item banking systems
this consists of a content-area identifier and a unique item number within
the area. Previous banking systems have used content identifiers based
on mnemonic codes, Dewey decimal codes, and simple descriptive codes.
For banks of small to moderate size, a simple descriptive code is probably
best. For example, such a code might be six letters long. The item
identifier might then be six letters fcllowed by a number for identification
within that area.

Closely related to the classification and naming of items are the
mechanisms for item storage and retrieval. The item name provides the
first link in the search and retrieval of an item. An on-line directory of
item names and storage location addresses typically provides pointers for
use by programs that need access to the items. It is used in much the
same manner as a telephone directory. For small systems, large master
directories are not always feasible, however. Limited disc storage space
makes it impossible to maintain lists of thousands of item names and
corresponding disc addresses.

The storage technique that was developed for the proposed CAT
system attempts to make as much use as possible of the underlying

operating system's file storage facilities. Directories of files are
maintained by the operating system for the organization and access of data

-46-

menie mprat

e g4 S




o~ . .

L S

files. When applied to item banking, these directories can be used as the
first level of organization of an item banking scheme.

To take advantage of the operating system, then, the name of the
item must contain, in part, some information pertaining to its location.
This can be readily accomplished by implementing a scheme that uses the
first n characters of the item name as the filename of the pool in which
this item is stored (where n is less than or equal to the maximum allowable
filename size for the given system). For most systems six characters are
allowable. Very large item banks or very complex naming schemes may
require more complex software algorithms for efficient storage and
retrievai. For the proposed system, the file name approach should
suffice.

The remaining characters of an item name are then used to locate an
item within the pool. This is accomplished by using the directory that the
item bank maintains at the beginning of each file. For example, to find
the item named VOCABU001, the first six letters are used for the filename
(thus the file "VOCABU" is opened) and within that file, its directory
contains the remainder of the name, "001."

Items themselves are stored with both header and body together as a
single record. The header contains the various item characteristic
parameters and other flags that indicate the type of the item and its
various execution requirements. The body of an item contains its textual
information. Since the body of an item can be of any length, the item
records that make up a file of items must be variable length records.

Special Items

Videodisc and graphics displays were the two most desired display
options for the CAT system prototype. To support these options, the item
banking system must include in its design features that facilitate entry
and editing of these options.

Videodisc. The videodisc option to the proposed system will be
implemented using a standard serial interface to the videodisc and an
auxiliary TV monitor beside the video screen/keyboard assembly.
Videodisc pictures will be displayed on the auxiliary monitor while any
explanatory text will appear on the CAT video screen. More extensive
features for combining videodisc and computer displays were considered to
be beyond the scope and price constraints of this system because of the
technical complexities involved in mixing computer and videodisc signals on
a single screen (see Bejar, 1982).

Three basic functions are supported with videodisc: (1) displaying a
single frame, (2) displaying a range of frames, and (3) looping through a
range of frames repeatedly. If an item uses the videodisc, three
additional fields are used in an item's header. These fields are: starting
frame number, final frame number, repeat flag. If the starting frame is

-47-

——nrm o m s




1

zero, then this item does not use the videodisc option. For displaying a
single frame, the start and end frame numbers are identical. The repeat
flag, if TRUE, specifies that the range of frames from start to end should

be displayed over and over until the response time expires or the question
is answered.

Graphics. Graphics are stored in the body of an item. The header
must contain a flag that, if set, indicates that the body of the item
contains graphics.

If point graphics are to be used, the item author needs the digitizer
option for the system when the item is being created or edited. (Systems
for administration of graphics items need not be equipped with such a
digitizer.) One form of digitizer consists of a specially wired pen and pad
arrangement that allows the user to move the pen across the pad's
surface. The x-y position of the pen is then sent to the CPU. Special
programs for the entry and editing of graphics with the digitizer are
readily available. Such a program will be used for graphics editing on the

proposed system and its output will be entered as t.:e body of a graphic
item.

Alternatively, graphic items can be stored as control instructions for
a graphic terminal. In this case, graphics items can be stored as textual

items. No graphics system software needs to be developed for this mode
of entry.

Creating and Editing ltem Text

The interface most frequently used in item banking performs the
functions of entering and editing an item. It should be as user-friendly
as possible. The most efficient and user-friendy editors are screen-
oriented editors. A screen editor displays a portion of a text document
and allows the user to make changes in the text that are immediately
apparent on the CRT screen. Since the CAT system prototype will have
a CRT screen, the use of the screen's features for editing should play
an important part of the design of the editor.

A combination of screen-oriented approaches was taken in the
proposed system. First the item header information (inserted into a
number of small data fields) is requested in a fill-in-the-blank mode. The
author can see what information is being requested and can fill in any or
all of the appropriate information. The fill-in approach seemed most
appropriate for headers since they are generally of a fixed format. This
fill-in-the-blank approach has been used in systems such as Plato (Control

Data, 1978a, 1978b). The question-answer approach has been used by some

(e.g., GEN!S | by Bell & Howell, 1979) but this is often too slow for
the experienced user. The fill-in approach displays almost all the
various fields at once, allowing the author to see what is required,
giving the whole picture and thus making the system easier to use.

-48-

e m—— -




Once the header has been completed to the author's satisfaction,
editing shifts to a free-format approach for the body of the item. Here
the screen-oriented editing features refered to above are used.

Test Administration

The test administration system needed by most users must perform
four functions:

1. It must instruct examinees how to use the testing system and, in
general, how to respond to items.

2. [t must display the items to the examinee.

3. It must accept responses to the items, edit them for proper
format, and score them.

3. It must pass information to a monitoring system that can keep a
proctor informed of each examinee's status.

Instructions

A basic part of test administration is teaching the examinee how to
respond to the test. [In paper-and-pencil testing, the instructions are
read by a test proctor as the examinee follows along in the test booklet.

A computerized testing system can free the proctor from this duty and
interactively administer instructions to each examinee, providing
clarification where it is required. As DeWitt and Weiss (1974) pointed out,
computerized instruction must be capable of branching on the basis of
examinee responses. By branching on a response, the system can produce
instructions of the type shown in Figure 3. Examinees who have
previously taken computerized tests or who read and comprehend the
instructions quickly can begin sooner than other examinees. Those who
require more extensive explanation receive the specific instructions they
need to start the test.

Branched instruction is, in a sense, simply a form of adaptive testing
in which the instructional screens are treated like (unscored) test items.
A computerized testing system capable of branched adaptive testing can
thus perform the instructional sequence as a type of test at the beginning
of the session. The proposed system is designed to handle instructional
sequences in this manner. Instructional screens will be entered as items
and the instructional sequence will be specified as a branched adaptive
test.

Item Presentation

Item presentation is the central task in test administration. Each test
item must be displayed for the examinee. This is typically done through

-49-




|

Figure 3. Sample Instructional Sequence

This is a computerized
adaptive test. Have you

ever taken this type of
test before? Answer Y
(yes) or N (no).

FV)—
_ /

This test will consist of
multiple-choice questions,

and some short, free-response
items. Do you understand?
Answer Y (yes) or N (no).

~
L/

(Y

<

AN

Are you ready to begin
the test? Answer Y (yes)
or N (no). (If you answer
N (no), the proctor will

Computerized adaptive
tests are designed to
provide a more accurate
estimate of your ability
than can be obtained from
traditional paper-and-pencil
tests. In this test, you
will be asked to answer a
number of questions. Some
will be multiple-choice
questions. Others will ask
you to type in some short,
free-response answers.

Do you have any questions?
Answer Y (yes) or N (no).
(If you answer yes, a proctor
will assist you.)

assist you as soon as
possible.)

=~
_/

Call
Proctor

et




i

T S S e N T e
.

audio or visual modes, visual being the more common of the two. In
designing an item display, both the display information and item structure
must be considered.

Display information. In a textual item, the display information
consists of characters. In a graphic item, the information may consist of
graphic characters, characters controlling a graphic terminal, or point
representations of the graphic display. Obviously a means must be
provided for transferring this information to the display device.

In addition to information transfer, some control functions must be
passed to the display device. The most basic of these is the "clear
screen" function. A function is also needed to control the timing of a
screen display. In simple items, this function needs only to control the
length of time the item is displayed on the screen before the screen is
cleared. Additional control functions may be needed to move the cursor to
particular locations.

In the proposed system, item information will be entered using a
special-purpose item editor. This editor will be designed to communicate
with a graphic digitizer for graphic input. [t will also set explicit
variables to perform the necessary control functions.

Structure. Presentation structure is defined by the logical
categorization of item components. For example, a basic multiple-choice
item consists of a stem that asks a question and several alterrative
responses, only one of which is correct. Typically, this can be
considered one parcel of information to be displayed.

A more complicated item may require a premessage or a postmessage.
A premessage may be used to warn the examinee that an item stem is
about to be presented. Such an item may require, structurally, several
premessages. The first would be the warning, the second might be a
blank screen between the warning and the item stem (to provide a pause
to clear the examinee's visual memory, for example), the third premessage
might be the actual item stem, and the fourth might be another pause.
The alternatives would constitute the entire item and would be presented
on a separate screen display.

The purpose of a premessage is to allow several portions of an item
to be presented in a precisely timed manner. Each of the messages could
logically be considered an item. However, if each message required a disc
access, the timing between the messages would not be precise. The
premessage structure allows all portions to be gathered into computer
memory before presentation of the sequence is begun.

A postmessage is used to append additional information onto the end
of an item. An example of where a postmessage might be useful is for
adding the message "Don't forget to press the return key" to the end of
the item. A postmessage can also be useful for providing feedback on the

-51-




response given. To do this, however, the postmessage must be
conditional on the response given.

The proposed system is designed with a structure containing both
premessages and postmessages. The premessages may be stacked so that
several may be administered. This means that premessages may refer to
other premessages and that the first cne administered will be the last one
referenced. Similarly, the postmessages may be chained. This means that
a postmessage may refer to other postmessages and they will be presented
in the order that they are referenced. Postmessages cannot be conditional
on the response in the proposed system, however, only the item itself
can accept responses. Premessages and postmessages simply present
information to the examinee.

Response Acceptance and Editing

Error correction. Accepting and editing item responses is the next
task for a computerized adaptive testing system to consider. It is
unrealistic to expect that all examinees will enter their responses
perfectly. This raises the issue of how to allow examinees to correct their
errors.

Short responses will probably be solicited for most testing
applications. Therefore, the easiest and most efficient means of correction
is probably a destructive-backspace key. This key permits correction of
the most recent character entered and can also erase an entire entry if
necessary. A non-destructive-backspace key permits characters to be
inserted in a previously typed string of characters and is useful for
correcting long responses. It may be cumbersome and difficult to use,
however. The proposed system will thus have destructive-backspace error
correction.

Special responses. Provisions should be made to allow examinees to
request assistance, omit items, or to otherwise interrupt the regular
sequence of item presentation for any reason. ldeally, these special
responses should each be contained on a single key. A long list of such
responses could be implemented, but the most important are HELP and
PASS.

HELP should be designed to be accepted at any point in a testing
session. It will direct the administration system to freeze the test and
signal the proctor. The signal will continue until the proctor responds.
Should an examinee choose not to respond to an item, the PASS key would
enable him/her to skip that item quickly and easily.

The proposed system will support HELP and PASS function keys.
Timing. Provision should also be made for controlling the length of

time during which a response will be accepted. For some items, this time
can be controlied by the amount of time the item display is left on the

_52_

o




i

screen. For others, such as items displayed for a fraction of a second, a
separate response time should be provided. In the proposed system,
stimulus and resporse times will be contained as characteristics of the
items.

Examinee Monitoring

Even though the system software is designed to be as user-friendly
as possible, it may still be necessary to provide personal supervision and
assistance. An examinee-monitoring system (cf. Prestwood, 1980) would
allow this. This assumes there will always be a proctor present at the
monitoring station; responses to the questionnaire suggested that this
assumption is valid.

The proctor will, at a minimum, start the test from either the
monitoring station or the examinee's terminal. The proctor should also be
able to stop or interrupt a test (pause) without losing the response data
accumulated to that point.

As mentioned in the previous section, an examinee could signal the
proctor for assistance with the HELP key at any time. If a proctor's
terminal was not available, the examinee's terminal could beep or flash. I[f
a proctor's terminal was available, the help-needed indicator could flash at
the monitoring station until the proctor responded. A proctor's terminal
could also be used to track the examinee's performance. This would allow
the proctor to determine if the examinee needed help and would allow the
proctor to see where in the testing sequence an examinee was.

Regardiess of whether a proctor's terminal was available, the
monitoring system could constantly evaluate the examinee's response
pattern to detect problems such as "sleeping”, random responding, and
coached responding (Prestwood, 1980). Algorithms are available for
detecting some of these problems and should be useful in informing the
proctor of problems s/he might otherwise fail to detect, especially when
large numbers of examinees are being tested.

The basic concerns of the system design with regard to the .
monitoring system are the design or selection of the error-detection
algorithms and the provision of communication between the testing stations
and the proctor's station. The former has been provided elsewhere (cf.
Prestwood, 1980) and the latter is dependent on the hardware
configuration. The proposed system will provide capability for
error-detecting algorithms and will, as an option, support the proctor's
console.

Test Interpretation

If the system is to be easy to use, score interpretations and displays
must be easy to produce. An interpretation should be an easy-to-read,

-53-

i
i
i
3

e




well-formatted presentation of the test results. Interpretation is not a

trivial task. The user must be able t¢ wecify detailed instructions for
the interpretive function to use. However, these instructions should be
easy for the user to understand and/or specify.

At one extreme, the specifications could be quite simple. The data
would be stored (for both pre-defined or user-defined tests) in a standard
format and the user would not need to know anything about the internal
software mechanisms. The resu'ts, in this case, would be displayed in a
uniform manner. The obvious drawback to this scheme is the uniformity it
imposes. Uniformity i, not necessarily undesirable, but in this case it
reduces the flexibility of the overall system. Care was taken to allow the
user to design custom testing strategies. To force these strategies to use
a common interpretation would be a mistake.

At the other extreme, an interpretive system could be devised that
would allow the user to completely control the interpretation and display of
test results. While such a system would permit maximum user control, it
would also require the user to be well versed in system details concerning
the storage, retrieval, and display of data. This would be an
unnecessary burden on the majority of system users.

The compromise selected for the proposed system allows users to
specify any number of different types of interpretations using a
structured author language. The language employs a modular design.
Modules contain textual materials ranging from cursory descriptive phrases
such as "High Ability" to complete narrative descriptions in paragraph
form. Each module also contains a logical expression that determines
whether or not the textual material is to be output for a particular
individual. The logical statements are similar in form to logical
expressions in FORTRAN or CATL.

For instance, if the description "High Ablility" is to be printed
whenever an individual's Bayesian modal score exceeds 2.0, the module
below is appropriate.

[#ABL001
{BSCORE > 2.0)
High Ability
#ABL002]

In this example the module's name is #ABL001, the first name after the
opening brackets, If BSCORE exceeds 2.0, the text Hi?h Ability is
printed. The last line of the module calls another module, #ABL002, which

may present additional information. That message, as well as the one in
the module above, could have been several paragraphs in length.

Modules can also cause an individual's actual scores to be printed

when that is desired. These scores may be embedded in text to provide
labeling for them.

-S4 -




‘f

Test Analysis

Two types of analyses are likely to be useful in a CAT system:
conventional item and test analyses and IRT item and test analyses. The
conventional analyses consist of estimates of a test's reliability, the
proportion of examinees answering each item correctly, and correlations
between the item responses and the total score. IRT analyses primarily
include estimation of the three [RT item parameters, item and test
information, and model-data fit.

Conventional Analyses

Conventional analyses are computed at the item and the test levels.
At the item level, two basic statistics are usually computed: item
difficulty and item-total-score correlation. The conventional item-difficulty
statistic is the proportion of individuals in a sample that answer the item
correctly. This requires very little computation. Similarly, the item-total
score correlations can be computed for a large number of items in a test
with little disc storage required.

At the test level are test reliability and distributional statistics. The
reliability estimate usually calculated in a conventional item analysis
program is a Kuder-Richardson Formula 20 (KR-20; cf. Nunnally, 1967).
The computations required are not computationally taxing nor do they
require extensive memory. They can be easily implemented on almost any
small microcomputer. The distributional statistics are usually limited to
the mean and standard deviation of the score distribution, although the
skew and kurtosis are also sometimes computed. Additionally, the
standard error of measurement, a function of the reliability and of the
standard deviation of scores, is often calculated.

The following conventional statistics were included in the design of
both the basic and the extended CAT systems:

1. Proportion of correct endorsements for each item
2. Correlation between each item score and the total score i
3. KR-20 test reliability ]
4. Score mean

5. Score standard deviation

6. Standard error of measurement

IRT Analyses

While conventional item analyses are helpful in refining items, IRT
item parameters are essential in an adaptive testing system. The IRT item
parameters, in general, describe the item's difficulty, its power to
discriminate among ability levels, and its susceptibility to guessing.
Although several IRT models are currently available, the most general one
in popular use is the three-parameter logistic model. In this model, a
indicates the item's discriminating power, b its difficulty, and c the

-55-




probability that an examinee with very low ability would answer it
correctly.

Unlike the conventional analyses, IRT item analyses are
computationally burdensome and may require a good deal of computer
memory. There are several methods for estimating these item parameters
including (1) a set of transformations from the conventional item statistics,
(2) a method that minimizes the lack of fit to the IRT model, and (3) a
maximum-likelihood approach that maximizes the joint likelihood of a set of
item and ability parameter estimates given the observed data. The
transformational approach is computationally the least taxing but does not
yield particularly good estimates unless a fairly strict set of assumptions is
met. The maximum-likelihood approach is, theoretically, the best of the
three approaches but requires much computation and a large amount of
memory for intermediate storage.

IRT test analyses are, in some ways, functionally similar to the
conventional analyses. The primary IRT test statistic is the test
information function that is proportional to the inverse of the squared
conditional standard error of measurement. From this function, the test
reliability can be estimated for any specified population of examinees.
Alternatively, the information function can be averaged over the examinees
in the population. Computation of the information function is relatively
simple once the item parameters have been estimated. Other test statistics
of possible interest include the means of the item parameters and their
standard deviations.

The IRT item analysis capability will be available on the extended
system. The method of analysis will be the method of maximum likelihood.
This calibration capability will be available for dichotomous items using the
three-parameter logistic mode!l. The proposed basic system will not contain
any IRT item analysis capabilities because it will not have sufficient
computing power nor will it have disc storage with sufficient capacity or
access speed.

-56-




I1l. DESIGN OF A SOFTWARE PACKAGE TO IMPLEMENT THE SYSTEM

The proposed adaptive testing system is composed of programs and
data files. These are shown grouped into subsystems in Figure 4., The
programs perform the basic functions of the adaptive testing system and
are grouped into five subsystems: Test Construction, ltem Banking, Test
Administration, Test Interpretation, and Test Analysis. The data files
provide a means of communication between the programs. Although the
data files are shown within subsystem boundaries in the figure, the data
files are typically typically shared by two or more of the subsystems. In
addition to the five subsystems, Figure 4 also shows a system editor.

This editor is one of the operating system programs. Although not shown
explicitly in Figure 4, the operating system is also an essential part of the
proposed system. Each of the subsystems is described in some detail
below.

Test Construction

Template Processing

Templates are test-specification shells written in CATL. They differ
from complete test specifications in that they contain holes marked by
special placeholders indicating the positions for item identifiers and other
pieces of information. A template can be "filled in" by the test developer
to produce a complete test specification. This test can, in turn, be
consolidated into an executable test file and then administered. This
filling in, or preprocessing, of templates allows a novice user to construct
tests easily. It also provides a major convenience for those test
developers who need to construct a variety of tests that use the same test
strategy. For more information concerning the creation of tests using
templates, as well as information on the templates themselves, see Chapter
5 and section 8.9 of the draft User's Manual (Appendix A).

The design of the template processor is shown in Figure 5. !t
depicts the five major functions of the preprocessor as a hierarchy. The
functions in this hierarchy, which is a system design document, can be
translated into procedures that operate as described below:

Input and output. The preprocessor, called Fill-Template in
Figure 5, reads through the test-template (see Figure 4) using the
procedure Read-Source. Read-Source examines each line to see if it
contains any of the special template constructs (i.e., INSTRUCT statements
or blanks to fill in). [f no menu statements are found, the line is
written in its original form to the test-specification file (Figure #4)
via the procedure Write-Test.

-57-




140day

J3j1dwon
*124dadyu)

*j12adg
*124duaju|

*324dadyu|

3)qeindax3y

{

1\IJ

sBups;;

)

d9)2aduaayu)
ise}l

S

s14oday

s0p3 |

’-II-IIIIIllIll.l.lllllllllIIIII.II--

1

wajl|
$

s}nsay
1S9

J9zAjeuy

1s9] 2 w9y

jueg
wayy

t

401NJax3]

1s9)
3|genoaxy

J01epilosuo)

MIIAJDAQ WAISAS

40MpP13
wajysAg

ajejdwa |
isal

!

* j10dg
159

A0SS3204d
ajejdws |

* 34nBy4

U r— - —




Figure 5. Template Processor Overview

Fill-
Template
i ] ] A
Read- Print- Accept- Flush- Write-
Source Instructs {input Trim Test
| i
Single- Multiple-
Entry Entry

Print-Instructs. If an INSTRUCT statement is encountered at the
beginning of a line, then the remainder of the characters following the
keyword INSTRUCT are displayed on the user's screen. This displayed
text contains instructions from the template author to the test developer
concerning the type of information to be supplied, the format that is
required, etc. The INSTRUCT statements are not copied into the test
file. Furthermore, they cannot be continued onto a second line. Multiple
lines of instruction require multiple INSTRUCT lines.

Accept-input. The presence of an underline character ("_")
indicates that the user needs to supply information, thereby "filling in the
blanks" of a template. A # character displayed after an underiine
indicates that multiple, repetitive input is required. This aspect of the
system design permits a user to easily input item lists of unspecified
length.

Both types of input (single- and multiple-entry) are handled by the
Accept-lnput procedure. Accept-input deals with these two cases by
invoking one of two separate procedures, whichever is appropriate. For
the simple case, the Single-Entry procedure accepts input from the test
developer; this input is used to replace the underline character directly.

_59-




I

Typically, item identifiers will be input to the preprocessor, although the
system does not restrict the use of underlines to item identifiers. Any
type of input will be accepted, inserted at that point, and written to the

test file. It is up to the template author to provide sufficient INSTRUCT
statements to explain the input requirements.

The procedure Muitiple-Entry is called to handie the repetitive case.
Here again the user's input replaces the underline characters, and the new
line is written to the testfile. However, in contrast to Single-Entry, the
preprocessor does not move on to the next line in the template file.
Instead, the same line is repeated: New input is requested from the user
and, if supplied, replaces the underlines. This new line is written to the
test file. This process continues until the user responds to the input
with a special function key to terminate it.

Flush-Trim. To allow additional control and thus enable a single test
template to be used for tests of slightly different structures, another
special function key is provided. This key directs the preprocessor to
finish the process of building the test without any more input. When this
key is pressed in response to a user-input request, the preprocessor sets
a flag to indicate that it is in "flush" mode. When in flush mode, the
Print-Instruct and Accept-Input programs are no longer called. Instead,
a call is made to the Flush-Trim program. This program operates on each
line, trimming off all but the label field, and returns the modified line to
be written to the test file. (The labels must be preserved so that
branches can be made from previous statements to that point.)

An example of how this capability might be used can be seen in the
development of a template for a stradaptive test. The template might be
developed to handle a maximum of, say, 15 strata. Each stratum requires
several CATL statements to set it up and to distinguish it from other
strata so the multiple-entry feature (which has its own termination
capability) cannot be used across strata. However, with the Flush-Trim
procedure, a user can terminate stratum completion after any number of
strata. A single template is thus useful for several different forms of a
stradaptive test.

Summary. In the test construction subsystem, a CATL template is
itself a CATL program with INSTRUCT and other special statements
embedded in it for use by the menu processor. Through interaction with
the user, the menu processor produces a standard CATL program by
copying the CATL template and replacing the INSTRUCT and underline
statements with other statements. Template processing, when complete,
produces a test file of CATL statements. This file is then given a, input
to the Test Consolidator which converts it into an executable test.
Template preprocessing provides a simple set of constructs for use by the

template author, thereby making the authoring task as clear and easy as
possible.

-60-~




Test Consolidation

Test consolidation is a process very similar to program compilation
that is used to minimize the processing required at run time. In the
consolidation process, special processing is performed on SEARCH lists to
produce a table for item selection at run time, item identifiers are
converted to item addresses, and the CATL source statements are
converted into a shorthand form that can be quickly processed and is more
compact than the source test specification. Once test consolidation is
complete, the test is ready for administration. As such it can, if desired,
be transferred to a smaller system for administration.

Consolidation is a three-stage process. The first stage converts the
CATL source statements of a test into the executable shorthand. It also
produces tables from the SEARCH lists. The second stage selects the
items that are used in a test from the global item bank (or banks) and
creates a file containing only those selected items. The third stage makes
a final pass on the executable shorthand code to resolve branching
addresses (i.e., to fill in addresses at the branch-initiation points that
were not known when that part of the source was consolidated on the first
pass). It also replaces item references with file addresses (from the file
created in stage two). The design for the test consolidator is depicted
graphically in the hierarchy chart of Figure 6.

Stage-One. Stage-One is a parser for CATL statements. To parse a
statement, the source statement from the test-specification file is
translated into the shorthand executable form. When the statement has
been parsed, the executable statement is written to the executable test
file. This parsing is accomplished through a combination or two
well-established parsing techniques. Most of the statements are parsed via
a recursive-descent procedure. The parser design follows very closely
the BNF {Backus-Naur Form, a system for formalizing syntax) definition of
the language. (See Appendix B for a partial BNF description of CATL.)

For example, a CATL test consists of the following sequence: (1) the
keyword TEST, (2) declarative statements, (3} executable statements, and
(4) the keyword ENDTEST. Since the outermost syntactic unit is a test,
the Stage-One parser attempts to find the four syntactic parts that make
up a test. First it must find the keyword TEST. Finding that,

Stage-One simply writes the appropriate keyword to the executable test
file.

Next must come the declarative statements (see section 8.5 of the
draft User's Manual in Appendix A). Since declarative statements can
themselves consist of many parts, it is appropriate that Stage-One call a
separate module to parse declarative statements. Hence,
Parse-Declaratives is required.

Once declarative statements have been parsed, executable statements
follow. These are defined in the BNF description as the construct

..6]_




..... T - = = Tr—————— — —— J
- {
|
K

’

'

usyo | :

~IXaN
-199

S

M,

13 13)| -ppv - appy Jequiny 4

-leujg ~way| | youeag 13 ~way) way| gaql -way| 13| | *swas *22q
-ay4ml |-aajosoy] Foajosay -peay -2401§ -Adoy -peay ~IXaN -ayam | | -osaeq | |-osaeyq
,w
9y omy auQ |
-obeyg -abeyg -abeyg

L ] |
;
!

J01EPJIOSU0Y)

189 .

MI|AIIAQ J01BPIIOSUOD

*g 3a4nbi4



LA -
.

<statements>. Again this is a complex structure, so a separate module,
Parse-Statements, is called to parse <statements>.

The final element of a test is the keyword ENDTEST. When this
word is encountered, the corresponding ENDTEST is written to the
executable file.

The process described above follows directly from the BNF and
exemplifies the design for Stage-One and its subordinate routines. The
Parse-Declaratives and Parse-Statements modules can be designed in a like
manner: Keywords are handled within the module for the corresponding
syntactic element; more complete structures are handled by subordinate
modules.

The second form of parsing used within the first stage of the test
consolidator is operator-precedence parsing. This approach is used to
parse logical and arithmetic expressions. Operator precedence is used
here because is it especially well-suited to parsing arithmetic and logical
expressions -- it can use the precedence and associativity of the various
operators to guide the parse (Aho & Ullman, 1977).

The result of parsing an expression is a Reverse Polish Notation
(RPN, or postfix) form of the expression. RPN is used as the executable
form for expressions because it is fast and convenient to execute. It
allows the expression to be evaluated during test administration by means
of a simple stack mechanism.

Get-Next-Token is a utility routine called throughout the parsing
process. It reads the source file (opening it if necessary) character by
character until it has enough characters to comprise a token, the smallest
syntactical element. Tokens are keywords (such as TEST), operators
{such as = or +), and user-defined identifiers (such as item numbers or
labels). Once a token has been found, Get-Next-Token looks it up in the
appropriate symbol table to determine if it is a keyword, operator, or
user-defined name. If it is a user-defined name, that name is installed in
the symbol table for future reference.

GGet-Next-Token also passes comments and processes continuation
lines. Thus, the parsing routine sees the source file not as a file with
lines of characters, some to be ignored (comments) and some to continue
across lines, but rather as an input file consisting of a continuous stream
of tokens.

The procedure Write-ET writes the ENDTEST keyword to the
executable test file (ET). Additionally, it resets the consolidator to the
condition it was in (e.g., to the previous test level, if the ended test was
a subtest) prior to beginning the test.

Stage-Two. Stage-Two collects the items specified in the test and
copies them from the item data base onto a separate file to be used during

-63-




i

test administration. This approach makes the executable test a wholly
separate entity, removing the restriction that the entire item bank be
on-fine during test administration.

Stage-Two begins by getting an item name from one of the tables
built during the first stage. The Next-Iltem-Number procedure extracts
this name from the table. Subsequent calls to Next-item-Number will
return subsequent names from the table.

The Read-IDB procedure locates the specified item in the item data
base (IDB). It returns a file pointer/disc address for the location of that
item in the IDB. Copy-ltem takes that address and copies the item into
the file of items for this test. It creates that file, if necessary (as on
first call) and returns the address of the item in the new item file.

Store-ltem-Address stores the address returned by Copy-ltem in the
table read by Next-ltem-Number. This information will be used by the
third stage to replace item numbers with disc addresses in the ET.

This process is repeatea for all items in the table of item numbers.
When all items have been copied, Stage-Two is complete.

Stage-Three. Stage-Three then makes a final pass of the ET.
Read ET reads one symbol from the ET. If it does not need alteration, it
is written immediately to the executable test file in its final form by
Write-Final-ET.

There are two constructs modified by Stage-Three. First, any
branch, whether implied (as with IF) or explicit, is given a file address to
replace the branching location; this is accomplished using the procedure
Resolve-Branch-Address. This address is the file address of the
referenced instruction in the executable test file. The addresses were
saved during Stage-One when the locations were encountered in the first
pass through of the test. They were stored in the symbol table for labels
(implied and explicit) as maintained by Get-Next-Token.

The other construct that Stage-Three deals with is item references.
The file address for an item, saved by Store-ltem-Address, is used here
by module Resolve-item-Address to replace the item number in the ET.
This eliminates the need for directory searches during test administration.
An item is located directly with this disc address.

Summary

CATL programs may be created by using the template processor or
by using the system editor. After a CATL program has been created by
either method, it can be consolidated using the test consolidator. The
consolidator combines the testing strategies from the CATL program with
the items from one or more item files, and produces an executable test

-64-




file. The executable test file can be used with the test administration and
test analysis subsystems.

Item Banking

The Item Banking subsystem is used to maintain files of items. The
responsibilities of the item banking system are to provide a means of
entering items into a random-access item bank, editing those items, and
managing a table that allows the items to be accessed by item number.

The item entry and editing features of the bank will be accomplished
by a special-purpose item editor. In design, this editor is simply a text
editor. Its specific design should match as closely as possible the system
editor on the chosen system. To do this, the system on which it is to be
implemented must first be chosen. Since it is such a standard design and
since its specific features are unknown, no specific design for the item
editor is provided in this preliminary design document.

The random access portion of the banking system is a standard
implementation of a keyed random access method (KRAM) filing system and
requires no further explanation here.

The item banking system designed for the proposed system should in
no way be confused with the extensive item banking systems developed for
computer-assisted test construction systems. These systems contain
additional features for selecting, organizing, and formatting items into
tests. Such features are unneccessary in a computerized testing system.

Test Administration

The Test Administration subsystem consists of the programs used to
administer a test to an examinee. At the heart of the test administration
software is the test executor, which interprets the test code, initiates item
displays, accepts responses, and invokes scoring procedures. That is, it
administers the tests created by the test consolidator, and through
interaction with the examinee, creates a file of test results. These results
can be used with the test analysis or test interpretation subsystems.

The executor software administers the test by executing the
executable test file produced by the test consolidator. Figure 7 shows
these functions as logical modules arranged in a hierarchy, with the
highest functions on top and subordinate functions below. As is the case
with all designs in this report, Figure 7 represents only the upper level
of the design.

-65_

o ool | . i — e

Y




vy

*INJIsuU| cadx3 *wwo) *saeyn
-}XaN -wad g -*ony *uodsay wayy *‘youeug -apiy way |
-13g -*|eay -*29x3 -1ydeddy| fAeidsig -19¢ -43A0 -199
L J | ] — ]
§532044 way| w3y
-3150d - J9)sjuiupy —asedauyd
I —J
juasaad
inding *A3suj
-pue $3.402¢ -*I1XaN cadx3y
jew.ao4 -ajepdn S TIN -*lea3 asudnbag
sa|npoy
daay LIRS youeag aJe|dag ubissy ~1SaN
| ) | ) B L mad
ysneds|q
-pue
-ya3ad
M3IAJIAQ JOINJ3XT] L aunbig




Fetch-and-Dispatch

Fetch-and-Dispatch is the highest procedure in the hierarchy. It
reads the keyword of a statement from the executable test file, determines
which subordinate procedure is responsible for the instruction, and calls
that procedure. After the statement has been executed, control is
returned to Fetch-and-Dispatch to get another instruction.

Nest-Modules

Each test must begin with a TEST instruction, which can in turn
signal the beginning of a subtest nested within the main test. When a
TEST instruction is encountered within a test, the status of the test
currently executing must be stored, and the set of variables appropriate
for the new test must be activated. When an ENDTEST instruction is
encountered, the opposite sequence must be performed: The variables of
the current test must be inactivated and the status of the previous test
must be restored. This is referred to as module nesting and is
accomplished by the procedure Nest-Modules.

Assign

Assignment is accomplished by the Assign procedure, which is
invoked with the SET statement. A SET statement consists of an
expression and a variable name. The expression is evaluated and the
variable is set to the result by Assign.

Declare

The Declare procedure is responsible for setting up status tables
required by AUTOKEEP, SETSCORE, and TERMINATE. In response to an
AUTOKEEP statement, it sets up a string of variables to be kept after
each item is administered. In response to a SETSCORE statement, it sets
up a correspondence table to assign variables to scoring algorithms. In
response to a TERMINATE statement, it sets up a logical expression in a
buffer to be used in deciding when to terminate the test. All information
from the declarative statements is kept in a set of status tables. No overt
actions are performed by the declarative statements. They affect test
execution only through the action of other instructions that reference the
status tables.

Present

Present oversees the actual presentation of the item. It can be
invoked by an item statement or by several other statements that direct
the presentation of an item. The item specified on a call to Present is
read and prepared by Prepare-item using Get-ltem. Get-ltem also gets
any required pre- or post-messages. If branching is specified for the
item, it is set up by Set-Branches. If item characteristics are specified,

-67-

e




Override-Characteristics replaces the original values stored with the item
with the new values.

After the item has been prepared, Administer-item administers it.
The item is sent to the examinee's terminal by Display-ltem and the
examinee's response is read and edited by Accept-Response.

After the item has been administered, Post-Process takes control. If
the automatic command AUTOKEEP has been specified, the required scores
are updated and output by Execute-Automatic-Commands. The logical
expression stored in the termination variable is evaluated by
Evaluate-Termination-Expression. Set-Next-Instruction then evaluates the
termination result and the branch information to determine where execution
should proceed.

Sequence

The procedure Sequence manages a list of item statements. It keeps
a pointer and, each time it is executed, it causes the presentation of the
next item in the list. It may contain a branch clause to cause branching
after the item and it may contain characteristics to override characteristics
previously overridden by those in the item statements.

Search

Search finds the item that will yield the most psychometric information
given the current score status. To do this on an exhaustive, sequential
basis would require too much computer time. Instead, the consolidator
organizes the items in the search pool by trait level. Each trait level
corresponds to a sequence of items. The executor's job is thereby
reduced to determining a trait-level category and calling the proper
sequence. The sequence used here is processed by calling the procedure
Sequence.

Skip

Conditional execution of sections of CATL statements is implemented
by the Skip procedure. Skip controls the flow of execution through the
IF, ELSEIF, and ENDIF statements. The conditional instructions are
followed by a boolean expression to be evaluated as true or false. If the
expression is true, execution continues on the next line; otherwise
execution is directed to another location. Evaluate-Expression evaluates
the expression, and Set-Next-Instruction sets the location at which
execution will continue.

Keep
The Keep procedure writes variables to a file for later use. The

KEEP statement includes a variable list to be preserved. When executed,
the Keep procedure writes this variable list to the file. To do this, it

-68-~-

m m—— -




calls Update-Scores to update any score it will use and calls
Format-And-Output to write the data to a file.

Test Interpretation

The Test Interpretation subsystem is used to present useful
information based on test results. Using the system editor, the test
developer creates an interpretation specification that defines the meaning
of the results. The test interpreter uses the interpreter-specification and
the test-result files (Figure 4) to generate a report on the interpretation
of the test results.

The interpretive language is described in Chapter 9 of the draft
User's Manual in Appendix A. It is based on the concept of an
interpretive module consisting of a group of statements preceded by a
logical expression. During execution of the interpretation, the expression
is evaluated and if true, the associated module is executed. If the
expression is false, execution continues with the next module.

As a test specification had two forms, source and executable, a test
interpretation has two forms, source and executable. Thus, the
interpretation system has a program to convert the source to an executable
form and another program to execute the executable form. The former is
called the Interpretation Compiler and the latter is called the
Interpretation Executor.

Interpretation Compiler

The Interpretation Compiler is a two-pass compiler that translates the
source interpretation language into a convenient shorthand form. The
compiler is diagrammed in Figure 8. Pass-One does most of the work of
translation. Pass-Two inserts module addresses that are unresolved after
Pass-One is completed.

Pass-One. Three procedures are at the first level of the Pass-One
hierarchy. The interpretation system reads score data from files produced
by the test executor. To refer to these scores symbolically, names must
be associated with the values read. The procedure Name-Variables
performs this task. Using a list contained at the beginning of the
interpretation specification, Name-Variables associates symbolic names with
data locations in the input file. These symbolic names are stored in a
table along with a pointer to the score to which they refer so that the
values can be retrieved during execution to evaluate the expressions.

Parse-Module is the procedure responsible for analyzing the module of
interpretive text into its component parts for storage. It accomplishes
this through three subordinate modules: Open-Module, Parse-Expression,
and Process-Statement.

-69~




84009 Inpoy X3y
-lupad -{ted -9A0K
- » . T
juswale;g uojssaudxy anpow
-$S32044 ~asJey -uadgp
| N J i
SMpon $sa.4ppy s|npoy ajnpoy a|npoy sa|qejae A
-2401g ~}43sU]| -peay ~240)g -asdey -dweN
| . ] | 3 ]
OM | -SSk g aup-ssey
L J
sondwo)
*Jaadanqu)
M3IAIBAQ J3]1dwo) uopeIaldinuy  °g aunbpy

m——e e e




Open-Module is called when a left bracket is found, indicating the
beginning of the module. It reads the module name, if one is provided,
and puts it into a table along with the module's address in the executable
interpretation file so that it can be called by name by other modules.

Parse-Expression converts the logical expression at the beginning of
the module to RPN form and stores it in an expression buffer. If no
expression is provided with the module (an acceptable condition), a logical
expression equivalent to "true" is inserted in the buffer so the module will
be executed every time it is encountered.

Process-Statement processes the textual portion of the module (i.e.,
everything following the expression). It requires three subordinate
modules to accomplish this. Process-Statement processes a single
character at a time. If the character indicates no special function,
Process-Statement calls Move-Text to move a character of text into the
temporary module storage buffer. If the character indicates a call to
another module, Call-Module is called to insert ‘he keyword and either
insert the address of the called module or ress:ve space and flag the
location for resolution by Pass-Two. If a character calling for a score to
be printed is encountered, Print-Score is called. Print-Score inserts the
proper keyword and the table location of the desired score.

Upon completion of Parse-Module, Store-Module is called.
Store-Module gets the address of the next free location in the executable
interpretation file and writes the buffered module. Upon completion of the
write, it updates the address of the next free location in the file.

When an end-of-file is encountered on the source interpretation file, :
Pass-One terminates and Pass-Two begins.

Pass-Two. Pass-Two has only to insert the addresses of the modules
called by other modules in the specification that were not available when ;
they were needed by Pass-One. It does this using three subordinate
procedures.

Read-Module reads a module from the executable file and puts it in
the module buffer. It essentially does the opposite of what Store-Module
does in Pass-One.

Insert-Address scans the buffered module looking for flags indicating
unresolved addresses. When it finds one, it looks up the indicated module
in the table set up by Pass-One. If the module is referenced in the
table, the address is inserted. Otherwise, an error message is issued.

Store-Module is the same procedure used by Pass-One and performs
the same function.

When the end of the executable file is reached, the compiler
terminates. If any compilation errors were encountered, the executable

_71..




file is flagged to prevent it from being executed.

ready to be executed.

Interpretation Executor

The Interpretation Executor, diagrammed in Figure 9, is somewhat
The main procedure, Execute-Interpretation,’
procedures: Open-Module, Process-Module, and
Close-Module. The internal logic of Execute-Interpretation causes it to
Since the modules can call

simpler than the compiler.

has three subordinate

execute these three procedures sequentially.

each other, however, Execute-Interpretation may be called recursively

from the procedure Process-Module.

Otherwise, the file is

Figure 9. Interpretation Executor Overview
Execute-
Interpret.
| A
Open- Process- Close-
Module Module Module
| ]
Evaluate- Process-
Expression Text
1 1
Output- Call-
Text Module

-72-

-




Open-Module. To allow the remainder of a module to be skipped if
the associated expression is evaluated to be false, the location of the end
of the module must be known when execution of the module begins. This
information is provided in the executable interpretation file by the
compiler. The nature of the interpretation language provided allows
nested modules, however. When a left bracket is encountered indicating
the beginning of a module, the end location of the module currently
executing must be stacked so that the module can be returned to. The
function of Open-Module is to stack this information from the current
module, if one is executing, and to initialize the next one. Complete
stacking of the module is not required because the information prior to the
module call has already been processed and will not be needed again.

Process-Mcodule. Process-Module sequentially processes the
interpretive information in the module. It uses two subordinate
procedures to accomplish this. Evaluate-Expression evaluates the module's
logical expression. If it is true, Process-Text is called. If it is false,
control returns to Execute-Interpretation to close the module.

Process text has two subordinate procedures: Output-Text and
Call-Module. Output-Text processes the text character by character.
Standard characters are printed. Output control characters are translated
into their appropriate functions. Score-printing characters cause a score
to be printed. Call-Module generates a recursive call to the main
procedure, Execute-Interpretation. Stacking of the required information is
handled in that procedure.

Close-Module. Close-Module performs the reverse function of
Open-Module. It unstacks the information from the previously executing
module and continues where that one left off.

Summary. The interpretation system designed for the proposed
system consists of a compiler and an executor. A very simple
module-processing language is used to specify the interpretive output that
is produced from a test record. This language is compiled to executable
form and executed by the interpretation executor. The output produced
may contain textual and numerical information about an examinee's test
scores.

Test Analysis

The test-analysis subsystem provides analyses of the quality of the
tests and the items. It consists of several related programs providing test
evaluation, item pool refinement, and item calibration. These programs
require Information from the items, the test file, and the test results file.

The test-analysis programs, except for some file updating features,
are very similar to others already discussed in relation to other parts of

~-73-




L Ny

the system. They » » basically statistical programs and no system details
for these programs we provided here.

Summary

The software of the proposed system is designed to perform most of
the tasks that will be required by a researcher or practictioner wishing to
do adaptive testing. Overall, the system is quite large, a neccessity if it
is to be comprehensive. However, it is very modular in design. The
modularity of the programs allows one to set up an adaptive testing system
using only the programs needed.

The system is designed to address a wide range of expertise in both
computers and adaptive testing. The system can be used simply to
administer pre-developed tests. At the other extreme, it can produce a
complex test for the user who understands the field and wishes to be
creative. Provisions have been made for several levels of expertise
between these two extremes.

~74~




1IV. SELECTION OF COMPUTER HARDWARE

Hardware is the physical part of a computer. It includes a central
processor, memory, CRT screens, keyboards, printers, and disc and tape
drives. This section describes the requirements, evaluation, and selection
of hardware for an adaptive testing system. No understanding of
computer hardware is necessary to comprehend the hardware
recommendations made in this chapter. However, knowledge of the
following terms will allow the reader to understand the details of the
evaluation which led to these recommendations.

The fundamental unit of computer memory storage is called a byte. A
byte is the amount of storage needed to store one character of text or a
number less than 256. The most common unit of storage is a K. A K is
1024 bytes. A megabyte (abbreviated M) is 1024K or 1,048,576 bytes.

Computers have two kinds of storage: random acccess memory (called
RAM, or sometimes just "memory"), and secondary storage (usually floppy
discs or hard discs). All programs run by a computer must be in RAM, but
RAM is very expensive. Everything stored in RAM is destroyed when the
computer is turned off. Disc storage (secondary storage) is much less
expensive than RAM and is not affected by turning off the computer.
Therefore, programs and other data are stored on disc when they are not
needed in RAM. The amount of RAM